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Executive Summary  

Radiomics extraction is an essential part of Machine Learning pipelines applied to Cancer 

Imaging. This document presents the progress done on this front for an open-source and 

scalable radiomics extraction tool.  

In this deliverable, detailed functionality and specifics of the radiomics extraction process are 

provided. Also, a general overview of the preliminary steps such as lesion localization and 

segmentation tools are described. Moreover, one use-case application that includes radiomics 

feature selection pipeline for Breast Cancer Treatment Response Prediction using Magnetic 

Resonance Images is demonstrated.  

This task is the initial step towards answering the research question raised in Use-case 7 of 

the EuCanImage project: Could AI tools enable de-escalating neoadjuvant systemic therapy 

(NST) in patients highly likely to achieve a pathological complete response (pCR)? Both the 

radiomics extraction and treatment response prediction tools have been integrated and 

publicly available within the AI Virtual Research Environment (AI-VRE) of the EuCanImage 

platform at https://vre.eucanimage.eu.  

https://vre.eucanimage.eu/
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1 Introduction 

Early detection of cancer is a crucial step to increase survival rates and patient’s quality of 

life. Screening programmes provide additional aid to identify asymptomatic or early-stage 

cancer subjects. Radiological non-invasive imaging modalities such as Mammography (MG), 

Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and Ultrasound (US) 

imaging techniques are widely used for diagnosis, treatment planning, and disease 

monitoring. Artificial Intelligence (AI) has become one of the leading research fields in 

oncology with the aim to assist radiologists and medical doctors with decision support 

systems. Due to the large number of modalities and organs it is crucial to have a universal 

computational framework where a commonly used and standardised basis for any AI tool is 

already developed.  

Radiomics extraction and selection is one of these common grounds which is shared across 

all ML approaches regardless of the differences in modalities and organs. However, due to the 

differences in imaging techniques such as dimensionality (2D, 3D, 4D) and resolution (mm, 

μm) the radiomics extraction pipelines are often rewritten. Considering the various modalities 

and organs addressed in EuCanImage such as breast, colorectal, and liver with a variety of 

imaging modalities, this project provides a tool for radiomics extraction and selection. 

EuCanImage strives for building a world-wide open-access platform (i.e., VRE) where this tool 

has been integrated and accessible to the public in a cloud computing environment. 

In this document, we demonstrate the general pipeline that leads to radiomics extraction and 

selection on breast cancer MG images based on Use-Case 8 of the EuCanImage project. Then, 

the application of the tool is assessed using an example of Use-Case 7 by building an ML 

model that predicts breast cancer neoadjuvant treatment response prediction using pre-

treatment and single time point MRI images. 

1.1 General Pipeline: Radiomics analysis in Cancer Imaging (Use-Case 8: Cancer 

diagnosis) 

After image acquisition, there are some common prerequisites that need to be addressed 

before performing the radiomics and ML analysis on given images. Figure 1 illustrates the 

overall pipeline for radiomics analysis and machine learning for breast cancer diagnosis on 

screening and clinical mammogram images. 

 

 

Figure 1: Illustration of full pipeline for ML using Radiomics for breast cancer detection 
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In this example for breast mass classification, two preliminary stages are followed after image 

acquisition: lesion detection and pixel-level segmentation of the detected lesion. Both types 

of annotations are often done manually by an expert radiologist, which is a time consuming 

and laborious task. Hence, automating these preliminary steps is critical in developing 

decision support systems. Accordingly, these two tools have been developed based on deep-

learning models using multi-centre, multi-vendor public datasets. Table 1 shows acquired 

public datasets used in building both of the annotation tools. 

Table 1: Publicly available datasets used in mass detection and segmentation AI models’ development. 

Dataset 
OPTIMAM 

Hologic 

OPTIMAM 

Siemens 

OPTIMAM 

GE 

OPTIMAM 

Philips 

INbreast 

Siemens 
BCDR 

Cases 1924  65  45 208 50 334 

Images 3446  120  83 407  107 886 

Annotation 

type 
Bounding box Bounding box Bounding box Bounding box Segmentation Segmentation 

 

 

Figure 2: Homepage of the VRE. In this page, the available radiomics analysis tools are listed and can be assessed. Other 

available or under development tools can also be viewed with the coming soon tag. 

Automatic annotation tools for breast mass detection and segmentation are integrated into 

the VRE platform of EuCanImage. Figure 2 provides an overview of the current state of the 

VRE homepage and the tools included. Each tool can be accessed by (i) the homepage (Figure 

2), (ii) the “User workspace” tab (Figure 3) if the appropriate file types are chosen, i.e. the 

file types that each tool accepts as input, and (iii) the “Run Tool/Visualizer” tab 

(https://vre.eucanimage.eu/vre/launch/) (Figure 4). Each tool has its own front page  (Figure 

5), where it can be configured and when the user provides the adequate input and presses 

https://vre.eucanimage.eu/vre/launch/
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the Compute button, the page will be redirected to the “User Workspace”. The status of the 

job changes from pending to running to finishing. When the job finishes, the result(s) appears 

under the given experiment name and can be downloaded from there (Figure 6). The next 

section dives into the internal structures of each tool and the model training procedures that 

are used to achieve robust automated annotation tools. 

 

Figure 3: "User workspace" tab. In this page the user can find the previously uploaded data and the results of the experiments. In 

addition, these files can be selected to see available tools to process them. Lastly, the running jobs can be monitored while they 

change status from pending to running to finishing. 
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Figure 4: The Run tool/visualizer tab of the VRE. In this page, the available tools are listed and can be assessed. 

 

Figure 5: Main page and configuration settings for the breast mass detection tool. The input dataset must be selected and the 

option for the deep learning model must be defined prior to the tool’s execution. 
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Figure 6:  "User workspace" tab. After running jobs, this section of the VRE displays the progress of it and allows a 

monitorization of the execution and the possibility of downloading the results.  

1.2 AI based tools to automate prior processes to radiomics extraction 

Breast mass detection 

The initial step after image acquisition is spatial localisation of breast masses in high-

resolution MG images. EuCanImage data platform will be populated with data coming from 

different clinical centres that employ different scanner manufacturers. When building a robust 

AI solution, two important factors should be taken into account that are the predominant 

failure points: 1) domain shift – differences in scanner manufacturers and image acquisition 

protocols; and 2) dataset shift – differences in cohort specific distributions, e.g. lesion size, 

lesion aspect ratio. Both of these types of obstacles for AI should be taken into account at an 

early stage. Therefore, domain generalisation is a crucial step in building an AI solution. 

The proposed mass detection AI tool addresses these major issues by building a robust deep 

learning based model. The following model training pipeline has been proposed (see Figure 

7) [1]. First, scale intensity standardisation, to bring the histogram distributions of MG images 

into a standardised template using the algorithm proposed in [2]. Second, during training, 

along with standard data augmentation techniques such as flipping and rotation, Cutout [3] 

and RandConv [4] are applied to increase domain variability in the training images. 

Particularly, RandConv method allows transforming the texture of MG images while preserving 

the anatomical structures. Next, MixStyle [5] layers are added within ResNet50 CNN 

architecture that further increases domain variability in the deep feature level. Moreover, 

modern Transformer based architecture is employed, namely Deformable DETR [6], that 

utilises self-attention mechanisms that rely less on inductive biases that are dominant in 

traditional CNN based architectures. Then, the final model becomes less dependent on the 
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intensity differences caused by a variety of acquisition protocols and scanners. This approach 

is tested on multi-centre data and achieves state-of-the-art results. 

 

Figure 7: Scanner and domain shift robust breast mass detection pipeline. Figure courtesy of [1]. 

Breast mass segmentation 

Once the masses are localised, accurate segmentation masks are generated using a deep 

learning based model that is shown in Figure 8. Pixel-accurate segmentation is crucial to 

extract radiomics features that are not affected by healthy tissue and the true shape of a 

lesion is well outlined. This model is also trained using multi-centre data coming from INbreast 

and BCDR public datasets (Table 1) that have fine segmentation masks. The larger dataset 

OPTIMAM was not included due to the absence of lesion segmentations. Unlike the detection 

model, the number of training images is much less, hence, the network is shallower. However, 

to make this solution work, multiple additional techniques are utilised to improve the capacity 

of the network. First, the well-known U-Net architecture is used that has skip-connections 

between encoder and decoder blocks that are beneficial to avoid common problems such as 

vanishing gradient as well as benefiting from multi-level feature fusion. Furthermore, encoder 

blocks are based on residual connections and decoder blocks are equipped with attention 

mechanisms. Then, one of the most important performance gains is achieved using deep 

supervision strategy, where segmentation heads are attached after each encoder and decoder 

blocks. This allows the network to be supervised in every level of the network. This model 

also achieves competitive results with the state-of-the-art for mass segmentation. 

 

Figure 8: Breast mass segmentation network that is built on top of U-Net like architecture. Encoder Block (EB) in orange and 
Decoder Block (DB) in green have internal structures as depicted in the boxes below with corresponding colours. Ten 

Segmentation Heads (SH) are attached after each layer output with an up-scaling factor depending on the depth of the layer. 
SCSE - Squeeze and Excitation attention module. BN - Batch Normalisation. 
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2 Radiomics analysis tool 

Radiomics analysis has shown great potential in both MG and MRI modalities for diagnosis, 

treatment response, survival prediction, and molecular-subtype classification in breast cancer 

[7,8]. The radiomics analysis tool performs the extraction of a high number of quantitative 

features to characterise shape, intensity and texture of the Region of Interest (ROI), known 

as radiomics. The ROIs are delineated manually or using fully or semi-automatic tools. As it 

has been shown before, lesion localisation and segmentation tools are already integrated 

within the VRE of EuCanImage for MG modality. Currently, for the MRI modality, the radiomics 

analysis tool expects already delineated lesion ROIs. However, as part of the Use-Case 6, 

development of automatic detection and segmentation tools is scheduled and will be initiated 

upon availability of training data from the clinical partners involved in the project. 

2.1 Radiomics features 

The radiomics analysis tool of the EuCanImage platform is based on the open-source python-

based PyRadiomics platform version 3.0.1 and is developed in Python. In total, 105 features 

per ROI are extracted. The features can be divided in three categories (Figure 9): 

1. Shape radiomics: features of this category characterise the morphology, size and 

geometry of the ROI. 13 features within this category are calculated for every ROI: volume, 

surface area, surface area to volume ratio, sphericity, maximum 3D diameter, maximum 2D 

diameter (slice), maximum 2D diameter (column), maximum 2D diameter (row), major axis 

length, minor axis length, least axis length, elongation, flatness. 

2. Intensity radiomics: features that quantify the CMR intensity. 18 features are extracted 

for every ROI: energy, total energy, entropy, minimum, 10th Percentile, 90th Percentile, 

maximum, mean, median, interquartile range, range, mean absolute deviation, robust mean 

absolute deviation, root mean squared, skewness, kurtosis, variance, uniformity. 

3. Texture radiomics: The texture features quantify relations in intensities between 

neighbouring voxels. In total, 74 features are extracted using five different matrices: grey-

level co-occurrence matrix (GLCM, 23 features), grey level run-length matrix (GLRLM, 16 

features), grey-level size-zone matrix (GLSZM, 16 features), neighbouring grey tone 

difference matrix (NGTDM, 5 features), and grey-level dependence matrix (GLDM, 14 

features). 

 

Figure 9: Overview of the three types of radiomics features extracted from Breast MRI images and corresponding lesion 
segmentation masks. 



 
   

Page 11 of 15 

 

2.2 Tool overview 

Figure 10 shows the front page of the radiomics analysis tool. The produced output file will 

be used in the future as input to the Machine Learning Toolbox to perform diagnosis and 

identify the most informative features for the task at hand. 

 

Figure 10: Main page and configuration settings for the radiomics analysis tool. The input images and mask()  must be defined 

prior to its execution. 

2.2.1 Input 

The tool accepts as input: 

1. Mammograms in 2D or Magnetic Resonance Images in 3D should be provided in NIFTI 

format (.nii or .nii.gz). 

2. Segmentation mask in NIFTI format: 2D or 3D depending on whether the input images 

are MG or MRI, respectively. One segmentation per image should be provided. Multiple 

lesions per image can be presented in a single NIFTI file. The segmentation mask filename 

must be the same as the corresponding MG or MRI images with the addition of the suffix 

“_label”. 

3. CSV with information regarding the masks (optional): a .csv file that contains the 

information regarding (1) the correspondence between ROI and the labels present in the 

segmentation mask in case of multiple lesions. The .csv should contain at least the 

following columns: (1) id: image filename, (2) label_x: mask label corresponding to a 

specific lesion. In case the csv file is not provided, and multiple lesions are present, 

random labels are assigned to each lesion. 

4. Bin width (Optional): parameter for grey value discretization necessary used for radiomics 

calculation. If not specified by the user, the default value 25 (grey levels) is used. It is 

worth mentioning that an unlimited number of MG/MRI images and segmentations can 

be passed at the same time to the tool. 
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2.2.2 Output 

The output of the Radiomics Tool is a .csv file. Each row corresponds to a participant for which 

the MG/MRI and ROI has been provided and each column to a radiomic feature. The feature 

names are formatted as feature_name_label, where “label” is the index of the lesion present 

in the image. 

3 Radiomics Feature Selection: Application to Use-Case 7 on 

Treatment Response Prediction in Breast Cancer 

Biopsy confirmed invasive breast cancer is further followed-up with neoadjuvant 

chemotherapy treatment. Response to chemotherapy can be: 1) no-response – no changes 

or tumour has grown; 2) partial response – tumour has shrunk; 3) complete response – no 

signs of tumour. Depending on the response, the clinicians decide whether the patient should 

be headed to a surgery or undergo another type of chemotherapy. Response prediction to 

neoadjuvant chemotherapy is crucial and it allows planning treatment regimens for the 

patients to reduce the dangers and side-effects of chemotherapy. 

In this use-case study, a dataset of 100 patients was collected and the tumours were semi-

automatically segmented by undergraduate students after the lesions were localised by an 

expert radiologist. The study was conducted to evaluate the possibility of applying ML with 

radiomics features extracted from pre-chemotherapy MRI images. 

The radiomics extraction was done using the tool described in this deliverable and a CSV file 

was downloaded from the EuCanImage VRE as shown in Figure 11. 

 

Figure 11: Radiomics features extracted from 100-subject MRI dataset. 

The features were normalised, and a number of feature selection algorithms were tested such 

as k-best using chi2 and ANOVA F-value, variance based selection, sequential and recursive 

feature selection algorithms. The best performing setup in an 8-fold cross-validation was using 

the k-best feature selection algorithm. Among selected, only 4 were shape-based and the 

remaining were texture-based features. More improvements could be achieved by correcting 

the manual segmentation masks further with expert radiologists. 

The results are shown in Figure 12 where the Areas Under Receiver Operating Characteristic 

Curve (AUC-ROC) of 0.80 and 0.81 were achieved using RBF-SVM and AdaBoost with Random 

Forest classifiers. 
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The preliminary results will pave the way towards building more robust prediction and decision 

support systems that will be integrated into the VRE of EuCanImage. 

Figure 12: Preliminary results for the treatment response prediction tool for breast cancer using MRI images. 

4 Next steps 

Currently, EuCanImage is actively undertaking the annotation process for Liver, Colorectal, 

and Breast cancer use-cases. With more available data from the clinical partners, our next 

step will be to prepare a complete ML Toolbox that will enable researchers and doctors to 

easily build pipelines without prior expert knowledge. The ML toolbox will be built on top of 

the existing WORC framework [9] and integrated in the VRE. Two types of configurations will 

be available: 1) Preset tool – default pre-tested parameters; and 2) ML Mixer deck – allows 

users to build a pipeline based on image processing, radiomics features, feature pre-

processing, feature selection, and ML model. The ML Mixer deck allows to run an arbitrary 

sequence of operations and it will initiate a search space for each step automatically to 

estimate the best parameters. 

Overall, the workflow of the ML Toolbox will consist of a search space depicted in Figure 13. 

The search space consists of various sequential sets of algorithms, where each algorithm may 

include various hyperparameters, as indicated by the leaves in the trees. An example of a 

workflow, i.e., a specific combination of algorithms and parameters, is indicated by the grey 

nodes. The search workflow will be integrated in the VRE ML Toolbox. Figure 13 shows a 

prototype interface of the VRE tool which is under development and the planned report is due 

September 30, 2022. The progress that has been made on Radiomics feature extraction will 

aid greatly towards the successful completion of the ML Toolbox. 
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Figure 13: Schematic overview of the workflow search space in the ML Toolbox. Abbreviations: AdaBoost: adaptive boosting; 

ADASYN: adaptive synthetic sampling; KNN: k-nearest neighbour; GLCM: grey level co-occurrence matrix; SMOTE: synthetic 

minority oversampling technique; SVM: support vector machine. Figure courtesy of Starmans et al [9], EuCanImage partner. 

 

 

Figure 14: Machine Learning Toolbox Prototype (Under development and will be presented in Deliverable 5.3 which is due 

September 30, 2022). Two tabs will be available: 1) Preset tool – default pre-tested parameters; and 2) ML Mixer deck – allows 

users to build a pipeline based on image processing, radiomics features, feature pre-processing, feature selection, and ML 

model. 
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