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Executive Summary  

In the field of quantitative image analysis, the Radiomics Quality Score 1.0 is a popular tool 

that has been widely used to benchmark radiomics studies and encourages best scientific 

practices (https://www.nature.com/articles/nrclinonc.2017.141). Recent advancements and 

challenges impeding the clinical translation of radiomics have created the need for an 

improved benchmarking tool. We propose a new consensus-derived Radiomics Quality Score 

2.0 as a new standard for the quality assessment and facilitation of planning of radiomics 

studies. This document was prepared within the EuCanImage consortium in collaboration 

across work packages and centres. 
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Acronyms 

Name Abbreviation 

Area under the curve  AUC 

Deep Learning DL 

Handcrafted Radiomics HCR 

Image biomarker standardization initiative IBSI 

Quality-adjusted life years  QALYs 

 Radiomics Quality Score RQS 

Receiver operating characteristics curve  ROC 

SHapley Additive exPlanations SHAP 

Transparent Reporting of a multivariable prediction model 

for individual prognosis or diagnosis  

TRIPOD 

Transparent Reporting of Medical Image Acquisition TRIAC 
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Radiomics Quality Score 2.0: Towards 

Trustworthy Clinical Translation 

1 EuCanImage and RQS 2.0 

1.1 Document Formulation 

This document was first disseminated to the UM Precision Medicine Department and feedback 

was taken with an intention to fill the gaps in RQS 1.0. The department consists of individuals 

from multi-disciplinary backgrounds ranging from medicine to computer science. Feedback 

was taken and incorporated for every checkpoint present in the RQS tool and a new version 

was formed namely RQS 2.0. After incorporating the feedback from the UM Precision Medicine 

Department, the document was disseminated to multiple working groups (WG) in 

EUCanImage, spanning multiple work packages (WP), and institutes, and was further 

developed within the AI W, Clinical WG, and WP6 partners. Discussions were carried on 

regarding each checkpoint in the latest version of the document and feedback coming from 

these WGs were incorporated into the document. Figure 1 shows the procedure for the 

conception of the consensus document.  

 
Figure 1:  The workflow for the formulation of the consensus document outlining the metrics, criteria 

and procedures for testing performance and robustness. 

2 Abstract 

Radiomics, the quantitative analysis of medical images to extract image features and 

consequently incorporate them within decision support systems for clinical applications, is 

gaining research traction every year. After a decade of research, the clinical translation of 

radiomics is still sparse due to the insufficient quality of the radiomics studies that do not 

meet the clinical standards. Radiomics Quality Score 1.0 is a popular tool that has been widely 

used to benchmark radiomics studies and encourages best scientific practices. Due to recent 
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advancements and challenges such as harmonization and interpretability impeding the clinical 

translation of radiomics, there is a need for an improved benchmarking tool to assess the 

quality of the radiomics studies and for encouraging best scientific practice to translate 

radiomics into clinical practice. We propose Radiomics Quality Score 2.0 as a new standard 

for the quality assessment of radiomics that alleviates the problems of RQS 1.0.  

3 Introduction 

Medical imaging such as magnetic resonance imaging (MRI), computed tomography (CT), and 

positron emission tomography (PET) is regularly used in clinical practice to aid the decision-

making process for diagnostic, theragnostic, predictive, prognostic, follow-up, and treatment 

purposes [1,2]. Radiomics is a field where medical images are converted to mineable data. 

This information is achieved by extracting quantitative features which are further used for 

supporting clinical decisions [3,4]. The radiomics theory presumes that the quantitative 

analysis of medical images provides additional knowledge in a prompt and reproducible way 

to aid radiologists in reporting and clinicians in their decision-making process [5]. This 

acquired additional knowledge when combined with clinical data and associated with predicted 

data can foster the development of clinical decision support systems. Presently, there are two 

categories of radiomics studies (Figure 2): First, hand-crafted radiomics (HCR), which is 

dependent on a traditional workflow of extracting standardized hand-crafted features that are 

image biomarker standardization initiative (IBSI)-compliant. These features are either 

texture, shape, or intensity features that are extracted from a specific region of interest/s 

such as a tumor [5]. The modeling is usually done using machine learning techniques. The 

second category is a deep learning (DL) approach. It is a data-driven method that learns 

complex visual representative features by performing classification/segmentation tasks using 

neural networks.  

The term radiomics was coined in 2012 and the research interest in radiomics is growing 

every year as indicated by Figure 3,4. The clinical translation of radiomics research is rare 

even after a decade of research because the quality of radiomics study is insufficient to satisfy 

the requirements for clinical use [6].  Radiomics quality score 1.0 (RQS)1 was introduced to 

aid in the assessment of past and future radiomics studies and consequently increase the 

scientific rigor and quality of the radiomics studies[4]. A mean RQS score of 20.4%, 26.1%, 

and 27.4% was obtained after recent analyses of radiomics studies [7–9]. This shows that 

RQS is a stringent and demanding criterion [9–13] that aims to encourage the best scientific 

practice. RQS is a popular tool for the quality assessment of radiomics studies [9,12,14–18]. 

In the light of recent advancements and new challenges such as interpretability[19], 

harmonization [20], and reproducibility, and to alleviate the shortcomings of RQS[21], we 

introduce a newer version of RQS referred to as radiomics quality score 2.0 (RQS 2.0). RQS 

2.0 also makes a distinction between handcrafted radiomics and deep learning radiomics.  

 

 
1 https://www.radiomics.world/rqs 

https://paperpile.com/c/tnvSlk/zeZlc+6Iso0
https://paperpile.com/c/tnvSlk/voPYH+OgXBt
https://paperpile.com/c/tnvSlk/hXs5E
https://paperpile.com/c/tnvSlk/hXs5E
https://paperpile.com/c/tnvSlk/0qB1F
https://paperpile.com/c/tnvSlk/OgXBt
https://paperpile.com/c/tnvSlk/ylMhY+HWJ4Z+7dVGH
https://paperpile.com/c/tnvSlk/7dVGH+xvulw+1sDGf+YcqNF+oDuWJ
https://paperpile.com/c/tnvSlk/lI6DA+dTJNY+Z4DzC+Zamsg+aOYDm+7dVGH+YcqNF
https://paperpile.com/c/tnvSlk/ZCC9V
https://paperpile.com/c/tnvSlk/Hu2gM
https://paperpile.com/c/tnvSlk/8ztuv
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Figure 2: Radiomics involves quantitative analysis of imaging data and comprises handcrafted radiomics 

(HCR) and deep learning (DL). The figure shows a summary of the few steps involved for quantitative 

prediction using HCR and DL. (Full Resolution: https://tinyurl.com/dlhcrpipeline) 

 

Quality assessment of radiomics studies is essential for clinical translation. QUADAS tool for 

systematic reviews was developed in 2003 for the quality assessment of diagnostic studies 

and later improved to QUADAS-2[22]. Transparent Reporting of a multivariable prediction 

model for individual prognosis or diagnosis (TRIPOD) initiative consists of a set of 

recommendations for reporting on developing, validating, and updating of a prediction model 

for prognosis or diagnosis thereby facilitating comparison of future studies [23]. Future-AI 

recommendations provide guidelines on implementing fairness, universality, traceability, 

usability, robustness, and explainability principles for trustworthy artificial intelligence in 

medical imaging. RQS 2.0 emulates the TRIPOD initiative and the guiding principles of 

FUTURE-AI are also reflected in the recommendations of RQS 2.0. By integrating the principles 

of FUTURE-AI, RQS 2.0 is intended to enhance the clinical safety, technical robustness, clinical 

acceptance, as well as ethical compliance of future radiomics tools, to make them more 

trustworthy and applicable in the real world. 

 

https://tinyurl.com/dlhcrpipeline
https://paperpile.com/c/tnvSlk/rR77S
https://paperpile.com/c/tnvSlk/t5fVF
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Figure 3: The number of articles published until 2022 matching the term “radiomics” on PubMed 

(https://pubmed.ncbi.nlm.nih.gov/?term=radiomics&timeline=expanded). 

 

 

Figure 4: The number of articles published until 2022 matching the term “radiomics” and “RQS”  on 

PubMed (https://pubmed.ncbi.nlm.nih.gov/?term=radiomics&timeline=expanded). 

4 Radiomics Quality Score 2.0 

Radiomics is the quantitative analysis of imaging data that further aids clinicians in their 

decision-making process. The information collected from radiomics studies can help foster the 

clinical decision support systems by establishing a relationship between radiomic features and 

clinical endpoints by developing diagnostic, prognostic, and predictive models. In the context 

of radiomics studies, the workflow can be divided into six checkpoints: Objectives and 

Discussion, Input Data, Method, Evaluation, Interpretability/Explainability, and Utility (Figure 

https://pubmed.ncbi.nlm.nih.gov/?term=radiomics&timeline=expanded
https://pubmed.ncbi.nlm.nih.gov/?term=radiomics&timeline=expanded
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5). To assess the quality of radiomics studies and to overcome the roadblocks of RQS 1.0, we 

propose RQS 2.0.  

 

 

Figure 5: The flowchart demonstrates the workflow of radiomics and the necessary steps that the 

radiomics quality score (RQS) 2.0 rewards or penalizes to encourage best scientific practice. The 

radiomics workflow takes into account handcrafted radiomics and deep learning radiomics. The new 

steps introduced in RQS 2.0 are shown by the plus (+) sign. (Full Resolution: 

https://tinyurl.com/rqsflow) 

4.1 Objectives and Clinical Discussion 
Before setting the criteria for data selection, the unmet clinical need must be clearly defined. 

The aims and objectives of the clinical question (e.g. classification or a segmentation task) at 

hand must be properly identified before moving on to the next steps. The requirements 

needed to carry out the experiments should be clearly defined (e.g. uni-centric or multi-

centric data). Furthermore, discussions should be carried out with the clinicians before model 

development to come to a consensus for choosing an appropriate explainability method. 

Input Data 

Radiomics studies pipelines begin with the data selection procedure of selecting the 

appropriate image modality, imaging protocol, the region of interest, and the prediction 

target/event. Standardized imaging protocols are important to eliminate variabilities arising 

due to different scanners and their acquisition and reconstruction settings [24,25]. One such 

way is to ensure that the protocols are well documented e.g., protocol following Transparent 

Reporting of Medical Image Acquisition (TRIAC [26,27]) guidelines for future proof radiomics 

or if a public protocol is used. TRIAC guidelines describe five different levels of evidence for 

reporting imaging protocols. Level 0 indicates that the protocol has not been formally 

approved with a reference number; Level 1 indicates that the protocol has been approved 

with a reference number in the archive of the department; Level 2 indicates that the protocol 

https://tinyurl.com/rqsflow
https://paperpile.com/c/tnvSlk/qX1v5+AJ6Ml
https://paperpile.com/c/tnvSlk/qnzcE+xZNcX
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has been approved with formal quality assurance  (recommended minimum level for 

prospective trials); Level 3 indicates that the protocol is established internationally and has 

been published in guideline documents and peer-reviewed papers; Level 4 indicates that the 

protocol is Future proof i.e., the protocol follows TRIAC Level 3, FAIR principles and retains 

raw data.  

Reporting the scanner hardware settings, image acquisition, and reconstruction methods are 

also critical in view of standardizing imaging protocols. Most of the radiomics studies include 

retrospective datasets that have already been imaged in the past with preset scanner/s and 

standardizing imaging protocols at this point might not be feasible. To tackle this either pre-

processing of images could be done before image analysis or a phantom study could be 

performed to detect inter-scanner differences and vendor-dependent features to assess the 

feature robustness [28–33]. This is intended to increase feature reproducibility. Few pre-

processing methods have been used in previous work including isotropic voxel resampling, 

bias field correction [34], normalizing intensity scales using histogram equalization [35,36], 

gray-level discretization [37], and processing of raw sensor-level image data [38,39]. Pre-

processing step is crucial for standardizing heterogeneous datasets to increase the 

reproducibility of features [27]. Acquiring images from individuals at multiple time points also 

allows analyzing feature robustness across temporal variabilities (e.g., organ movement). 

Once the model has been decided, defining model constraints is crucial for its development. 

E.g., defining inclusion and exclusion criteria for model inputs;  detecting and eliminating 

biases (e.g., sex, ethnicity, socio-economic factors, data imbalance) occurring due to diversity 

and distribution across diverse patient groups within the dataset/s.  

4.2 Method 

The next step is to build a generalizable model that fits the input data to predict outcome/s. 

If the method is already pre-registered on a public platform2, the model is already one step 

closer to being called a ‘generalizable’ model. To build a generalizable model that fits external 

data too, harmonization/normalization/correction methods could be implemented at the 

image level and/or feature level that produces robust images/features [20,40].  Many studies 

have shown that variabilities across the scanner protocol settings affect the reproducibility of 

radiomic features [41–49]. Hence, various harmonization methods are available that could be 

implemented to reduce multi-centric acquisition variability e.g., ComBat [50,51] for HCR and 

adversarial networks [52–59] for DL. Accounting for variabilities present within the dataset 

(uni-centric or multi-centric), across multiple segmentations (inter-observer delineations) and 

different scanner protocol settings, gives more insight into the nature of the dataset. This 

leads the workflow/study into producing more robust images/features for further analysis. 

Image biomarker standardization initiative (IBSI)-compliant radiomics features should be 

extracted. To reduce the high dimensionality of the extracted HCR features, feature reduction 

is needed to get rid of redundant features. Feature reduction is achieved using either test-

retest data, correlation-based analysis, cluster analysis, harmonization methods, and/or 

machine learning algorithms. It is a plus point if the study implements multivariable analysis 

with non-radiomic (clinical) features to give a more holistic model (applicable for HCR only). 

After modeling the features, a cut-off analysis should be implemented and the cut-off values 

(e.g., log-rank tests) should be checked and compared with previous studies to assess the 

performance of the prediction model. This would reduce the risk of reporting overly optimistic 

 
2 www.osf.io 

https://paperpile.com/c/tnvSlk/Omkgp+b2zoJ+8T5hm+lT71R+cQpc9+6dIb1
https://paperpile.com/c/tnvSlk/PKpTi
https://paperpile.com/c/tnvSlk/st2hg+grzNJ
https://paperpile.com/c/tnvSlk/E9WsJ
https://paperpile.com/c/tnvSlk/hHQ6E+6xAVS
https://paperpile.com/c/tnvSlk/xZNcX
https://paperpile.com/c/tnvSlk/Hu2gM+DCKn1
https://paperpile.com/c/tnvSlk/p0cCG+GVqhF+sVBPL+4GCdl+66cAR+nxHWb+pcA3Y+Lm0Zo+PXoPY
https://paperpile.com/c/tnvSlk/LjpuS+T7ppQ
https://paperpile.com/c/tnvSlk/B0l39+CTjYw+0bTy8+MgolU+LJpcA+bMT6L+EO2R0+j6O7I
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results. Even randomizing permutations within the data would help assess the risk of 

overfitting. To increase the robustness of the algorithm, investigations must be carried out 

for HCR and DL methods, or a combination thereof, in an ensemble. This way radiomics 

features might be helpful in interpreting the predicted outcomes from DL algorithms [60]. 

 

4.3 Evaluation 

Validation of the radiomics model is critical to assess its robustness and benchmark the 

performance of the model [7,61–63]. The validation should at least be carried out internally. 

Preferably, external validation on multi-centric heterogeneous data should be performed. The 

composition of the external dataset should reflect the distribution of assessed classes in the 

real-world clinical setting which is critical in terms of translation to clinical usage. The 

validation should be performed without retraining or adaptation of the cut-off value. 

Qualitative and quantitative sources of bias should be identified due to diversity present in 

the patient group such as sex, ethnicity, data imbalance, and difference in breast density 

[64]. Model performance should also be evaluated with respect to the identified biases. 

Discriminatory statistics such as receiver operating characteristics curve (ROC), the area 

under the curve (AUC), sensitivity, specificity, Mathews correlation coefficient (MCC) [65] 

should be used to evaluate the performance of the classification problems. Statistical 

significance (p-value) of the results should also be reported. For regression problems, mean 

squared error or root mean squared error should be reported and for prognostic problems, 

statistics such as C-index [66] should be reported. Calibration of a prediction model shows 

how closely the predicted probabilities agree numerically with the actual probability [67,68]. 

The predictions are grouped to assess the calibration of the model. Calibration statistics such 

as calibration plots, brier score [69], and calibration-in-the-large/slope should be reported to 

assess the robustness of the predicted probabilities. Bootstrapping techniques can be utilized 

to report the confidence interval of the discriminatory and calibration statistics. The validation 

performance should be compared with previously published radiomics signatures and 

algorithms. A prospective clinical trial (real or in-silico) to confirm the clinical validity and 

usefulness of the radiomics biomarker should be pre-registered in a trial database. This 

prospective clinical trial will provide the highest level of evidence of the utility of the radiomics 

study. Finally, the radiomics pipeline should be tested in a clinical environment as a final step 

for the clinical translation.   

4.4 Interpretability and Explainability 

One of the hurdles in the clinical translation of radiomics studies is the lack of transparency 

concerning the decision-making process of the Machine Learning models [19,70,71]. 

Transparency of radiomics prediction models is a legal [72] and ethical requirement, and it is 

a necessity for troubleshooting purposes. Intrinsic or post-hoc interpretability methods should 

be used for HCR e.g. SHAP analysis [73,74] and also for DL e.g. attribution methods [75]. 

Radiomics prediction models, in particular deep learning models, can fail due to noisy and 

out-of-distribution data. Radiomics models should provide an uncertainty estimate to allow 

clinicians to refrain from trusting predictions that have a high uncertainty [76]. The link 

between radiomics features and tumor biology should be investigated by correlating the image 

features with ground truth pathology substrates [17]. This can help in determining the 

relationship between tumor-biology-related genomic, cellular and metabolic information and 

image features. Evaluation of explanations should be carried out quantitatively to determine 

the sanity of the explanations [77,78]. Moreover, evaluation of explanations in a real world 

setting with clinicians should be carried out to ensure explanation satisfaction and trust.  

https://paperpile.com/c/tnvSlk/3hbgA
https://paperpile.com/c/tnvSlk/H96zH+qd960+xkF6L+ylMhY
https://paperpile.com/c/tnvSlk/X76Nj
https://paperpile.com/c/tnvSlk/QhpBK
https://paperpile.com/c/tnvSlk/c5gji
https://paperpile.com/c/tnvSlk/jWMdR+J2jBW
https://paperpile.com/c/tnvSlk/cPNqR
https://paperpile.com/c/tnvSlk/FfZgy+ZCC9V+5mNwE
https://paperpile.com/c/tnvSlk/zIXMp
https://paperpile.com/c/tnvSlk/7cFnZ+N9ItB
https://paperpile.com/c/tnvSlk/PLku3
https://paperpile.com/c/tnvSlk/3eVRr
https://paperpile.com/c/tnvSlk/Zamsg
https://paperpile.com/c/tnvSlk/ELwEM+qATwx
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4.5 Utility  

The radiomics workflow consists of a series of complex steps and each step needs to be 

carefully reported to allow researchers to reproduce and replicate results [79]. Reproducibility 

refers to the use of the same workflow and the same dataset to verify the results. Replication 

aims for a stronger affirmation of the workflow using a different dataset [80–82]. For 

reproducibility and replicability, the algorithm, source code, and model weights should be 

made publicly available. Furthermore, the medical image dataset along with segmentation, 

clinical data, and outcomes should also be made publicly available to allow future 

development. The added value of the radiomics should be highlighted by performing a 

comparison with the “gold standard” for performing the clinical task. The model’s limitations 

and scenarios under which the model demonstrates lower performance should be highlighted 

so that the users are made aware of the shortcomings beforehand. The level of automation 

for the clinical task due to radiomics can be described using the analogy of the level of 

automation of the car [83]. At level 0 (No Automation), a clinician performs the clinical task 

without using the radiomics model. At level 1 (Clinical Assistance), the clinician uses the 

radiomics model’s prediction for a part of the clinical task. At level 2 (Partial Automation), the 

clinician considers the radiomics model’s prediction for the clinical task before making the 

final recommendation. At level 3 (Conditional Automation), the radiomics model provides the 

predictions for the clinical task under the supervision and the clinician can intervene at any 

time. At level 4 (High Automation), the radiomics model provides the predictions and the 

clinician’s intervention is required for special (out-of-distribution) cases. At level 5 (Full 

Automation), the radiomics model provides predictions for the clinical task without human 

intervention. The current and potential clinical utility of the radiomics model in a clinical 

setting should be reported. For example, the radiomics models can be used in clinical decision 

support systems to predict the need for clinical intervention. Decision-curve analysis can help 

in visualizing the benefit of using the radiomics model to guide the decision [84]. Cost-

effectiveness of the decision support system using the radiomics model should be reported 

e.g. using quality-adjusted life years (QALYs) [85,86]. To continuously improve the radiomics 

pipeline, a strategy should be defined on improving and re-training the model from the errors 

after deployment in the clinical environment. It is important to evaluate the model periodically 

to ensure that the performance of the AI tool remains consistent with data shifts.  

 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/tnvSlk/lKkzV
https://paperpile.com/c/tnvSlk/AHo6U+PVyvg+wK3IC
https://paperpile.com/c/tnvSlk/G887W
https://paperpile.com/c/tnvSlk/KXPKn
https://paperpile.com/c/tnvSlk/7Kg9o+um1my
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5 Radiomics Quality Score 2.0 Table 

Table 1: The radiomics quality score (RQS) 2.0 consists of 35 checkpoints that reward or penalize 

radiomics studies to encourage best scientific practice. Each checkpoint shows the FUTURE-AI principle 

it promotes (Fairness, Universality, Traceability, Usability, Robustness, Explainability). Each checkpoint 

either belongs to Handcrafted Radiomics (HCR), deep learning (DL), or both.  

 

No. Criteria Points HCR/DL 

(A) Objectives and Clinical Discussion 

1. Unmet clinical need (UCN) defined where: 

● Uni-centre means UCN is defined by one centre 
● Multi-centre means UCN is agreed upon and defined by 

more than one centres 
● International multi-centre means UCN is agreed upon 

across borders 

-1 (uni-centre) 

+1 (multi-centre) 

+2 (international multi-centre)  

Both 

2.  Classification of the model: diagnostic, theragnostic, predictive, 

prognostic, follow-up 

 -1 (not clearly defined), +1 (defined) Both 

3.   Input from Radiologist/Imaging Specialists  for interpretable pipeline 

development. Discussion regarding choosing appropriate 

explainability method     

+1 (Clinical knowledge incorporated in the 

pipeline or explainability method decided and 

agreed with the clinician before model 

development) 

Both 

                                                                                                             (B)   Input data  

4.  Image protocol quality to be documented following the TRIAC level 

(Transparent Reporting of Medical Image Acquisition for a future 

proof radiomics).  

TRIAC guidelines describe five different levels of evidence for 

reporting imaging protocols.  

 

● Level 0 indicates that the protocol has not been formally 
approved with a reference number 

● Level 1 indicates that the protocol has been approved with 
a reference number in the archive of the department 

● Level 2 indicates that the protocol has been approved with 
formal quality assurance  (recommended minimum level for 
prospective trials) 

● Level 3 indicates that the protocol is established 
internationally and has been published in guideline 
documents and peer-reviewed papers 

● Level 4 indicates that the protocol is Future proof i.e., the 
protocol follows TRIAC Level 3, FAIR principles and retains 
raw data.  

+1 (TRIAC Level 1 and 2) 

+2 (TRIAC Level 3 and 4) 

Both 

5.  Hardware’s used described, image reconstruction method specified +1 (description of the hardware used for 

image acquisition), +1 (information about 

image reconstruction method e.g. 

convolutional kernel) 

Both 
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6.  Preprocessing of the images +1 (well-motivated preprocessing steps that 

account across variation  images) 

Both 

7.  Imaging at multiple time points - collect individuals’ images at 

additional time points. Analyze feature robustness to temporal 

variabilities (e.g., organ movement, organ expansion/shrinkage) 

+1 Both 

8.  Inclusion and exclusion criteria defined (e.g. a CT with 6 mm slice 

thickness cannot be analyzed)    

+1 (inclusion criteria defined) 

+1 (exclusion criteria defined) 

 

Both 

9.  Phantom study on all scanners - detect inter-scanner differences and 

vendor-dependent features. Analyze feature robustness. 

+1 HCR 

10.  The diversity and distribution across diverse patient groups (e.g.  

according to sex/gender, ethnicity, age) in the datasets should be 

reported at training and testing to identify potential biases.  

+1 (if diversity and distribution across 

diverse patient groups in the datasets have 

been reported and mitigation strategies need 

to be applied.) 

Both 

                          (C)   Method  

11.  Use of post-processing harmonization to reduce multi-center 

acquisition variability e.g. Combat for HCR and CycleGANs for DL      

+1  Both 

12.    Method and statistical plan pre-registered on a public platform (e.g. 

www.osf.io) 

+1  Both 

13.  The number of participating clinical sites in the training dataset - 1 one centre 

 +1 two centres 

 +2 > three centres 

Both 

14.  Use of IBSI compliant radiomics features +1 HCR 

15.  Multiple segmentations - possible actions are segmentation by 

different physicians/algorithms/software, perturbing segmentations 

by (random) noise, segmentation at different breathing cycles. 

Analyze feature robustness to segmentation variabilities    

+1 (multiple segmentation) 

  

 

Both 

16.  Feature reduction based on the test-retest dataset, other method or 

adjustment for multiple testing - decreases the risk of overfitting. 

Consider feature robustness when selecting features    

-3 (if neither measure is implemented), +3 

(if either measure is implemented) 

 

HCR 

17.  Multivariable analysis with non-radiomics features (e.g., age, EGFR 

mutation) - is expected to provide a more holistic model. Permits 

correlating/inferencing between radiomics and non-radiomics 

features 

+1 HCR 
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18.  Cut-off analyses - determine risk groups by either median, a 

previously published cut-off, or report a continuous risk variable or 

published method. Reduces the risk of reporting overly optimistic 

results 

+1 Both 

19.  Random permutations to assess the risk of overfitting. Randomize 

the input variable to get ideally an AUC not different than 0.5 and 

therefore assess the risk of overfitting 

+1 Both 

20.  

       

Investigate both handcrafted radiomics and deep learning, or a 

combination thereof, in an ensemble. Radiomics features may also 

help in the interpretability of deep learning 

+1 for comparative analysis or ensemble of 

HCR and DL approaches. 

Both 

21.      Quality Management System 

 

+1 available online with internal audit, +3 iso 

certification or equivalent with external audit 

Both 

(F)   Evaluation  

22.  Discrimination statistics - report discrimination statistics (e.g., C-

statistic, ROC curve, AUC) and their statistical significance (e.g., p-

values, confidence intervals). One can also apply a resampling 

method (for example, bootstrapping, cross-validation). 

+1 (if a discrimination statistic and its 

statistical significance are reported), +1 (if 

also a resampling method technique is 

applied) 

Both 

23.  Calibration statistics - report calibration statistics (e.g., Calibration-

in-the-large/slope, calibration plots) and their statistical significance 

(e.g., p-values, confidence intervals).  One can also apply a 

resampling method (for example, bootstrapping, cross-validation). 

+1 (if a calibration statistic and its statistical 

significance are reported), +1 (if also a 

resampling method technique is applied) 

Both 

24.   Comparison with previously published radiomics signatures and 

models by evaluation on a common dataset. 

+1 Both 

25.  Validation - the validation is performed without retraining and 

adaptation of the cut-off value, providing crucial information about 

credible clinical performance. 

-5 if validation is missing 

 +2 if validation is based on a dataset from 

the same institute 

 +3 if validation is based on a dataset from 

another institute 

 +4 if validation is based on two datasets 

from two distinct institutes 

 +5 if validation is based on three or more 

datasets from distinct institutes 

+6 if the validation is carried out on a third-

party framework on an external dataset 

Both 

26.  Prospective study registered in a trial database (real-world or In 

Silico), with sample size calculation - provides the highest level of 

evidence supporting the clinical validity and usefulness of the 

radiomics biomarker    

+5 (for prospective validation), +1 (if the 

trial is pre-registered), +1 (if sample size 

calculation) 

 

Both 
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27.  Algorithm tested in a clinical environment e.g. a department of 

Radiology or Nuclear medicine 

+2 Both 

28.  The composition of the external dataset should reflect the 

distribution of assessed classes in the real-world clinical setting. 

+1 Both 

29.  Evaluation should also assess the performance due to discriminative 

biases (e.g. sex/gender, age, ethnicity) identified, and the level of 

fairness.  

+1 Both 

(G)   Interpretability and Explainability  

30.   Detect and discuss biological correlates - demonstration of 

phenotypic differences (possibly associated with underlying gene-

protein expression patterns) deepens understanding of radiomics 

and biology    

+1 Both 

31.  Details on the intrinsic or post-hoc interpretability method or 

uncertainty estimation method utilized (e.g. attribution maps, SHAP 

analysis).  

+1 (for details on interpretability methods or 

uncertainty estimation) 

Both 

32.  Evaluation of the explanations using in-silico trials or by the 

clinicians (e.g. explanation satisfaction, trust score etc) .  

+1 (for the sanity and/or evaluation of 

explanations) 

Both 

(H)   Utility  

33.  Comparison to ‘gold standard’ - assess the extent to which the model 

agrees with/is superior to the current ‘gold standard’ method (e.g. 

Dr. evaluation, TNM-staging for survival prediction, Dr. 

Assessment). This comparison shows the added value of radiomics  

+2 Both 

34.  Potential clinical utility - report on the current and potential 

application of the model in a clinical setting (e.g., decision curve 

analysis) 

+2 Both 

35.  Define the model’s limitations and underperformance +1 Both 

36.  Cost-effectiveness analysis - report on the cost-effectiveness of the 

clinical application (e.g., QALYs generated). 

+1 Both 

37.  Level of automation for the clinical practice. 

1.  At level 0 (No Automation), a clinician performs the clinical 

task without using the radiomics model. 

2.  At level 1 (Clinical Assistance), the clinician uses the 

radiomics model’s prediction for a part of the clinical task. 

3.  At level 2 (Partial Automation), the clinician considers the 

radiomics model’s prediction for the clinical task before making 

the final recommendation. 

4.  At level 3 (Conditional Automation), the radiomics model 

provides the predictions for the clinical task under supervision 

One point per level of automation of the 

software. 

 

 

 

Level 1 (Clinical Assistance)          +1 

 

 

Level 2 (Partial Automation)           +2 

Both 
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and the clinician can intervene at any time. 

5.  At level 4 (High Automation), the radiomics model provides 

the predictions and the clinician’s intervention is required for 

special (out-of-distribution) cases. 

6.     At level 5 (Full Automation), the radiomics model provides 

predictions for the clinical task without human intervention. 

 

 

Level 3 (Conditional Automation)   +3 

 

 

Level 4 (High Automation)              +4 

 

 

Level 5 (Full Automation)                +5 

38.   The algorithm, source code, and coefficients are made publicly 

available. Add a table detailing the different versions of software & 

packages used.     

+1 Both 

39.   Open data - make data publicly available. Open data facilitates 

knowledge transfer and reproducibility of the study    

 

+1 if scans are open source, +1 if the 

ROI/segmentations are open source, +1 if 

clinical, non-DICOM data, and outcomes are 

open source. 

Both 

40.  Define strategy for continuous learning to learn and improve over 

time from errors.   

+1 Both 

41.  Define strategy to evaluate the model performance periodically due 

to data shifts 

+1 Both 

Total Points (HCR = 70, DL = 64 ) = 100 %  

 

6 Discussion  

A consensus was reached with all the participating partners within EUCanImage. Radiomics 

quality score sets ideal standards for radiomics analysis that may be very difficult to fulfill. 

The requirements of RQS 1.0 such as imaging at multiple timepoints and phantom study on 

all scanners are difficult to satisfy for retrospective studies[10]. These considerations can be 

helpful for prospective studies and ultimately improve the overall robustness of the radiomics 

model to meet the standard required for clinical translation. The mean score of radiomics 

studies reported by several reviews is already low [7,9,21] using RQS 1.0. Due to recent 

advancements and to alleviate the shortcomings of RQS 1.0, RQS 2.0 sets even higher 

standards. RQS 2.0 is more comprehensive and takes into account technical, clinical and 

ethical challenges posed by the emergence of artificial intelligence. In particular, RQS 2.0 

ensures that radiomics models can be trusted and accepted by healthcare professionals, and 

that they treat patients of different groups and backgrounds equally.  RQS 2.0 is an effective 

tool to highlight the deficiencies of recent radiomics studies and to serve as an important 

consideration for future radiomics studies.  

 

 

https://paperpile.com/c/tnvSlk/xvulw
https://paperpile.com/c/tnvSlk/8ztuv+7dVGH+ylMhY
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7 Future Directions for EuCanImage in light of RQS 2.0 

Radiomics Quality Score 2.0 is an ideal benchmark that is difficult to achieve but it outlines 

the steps and practices that are necessary for clinical translation. This final version of the 

document will be disseminated to experts within and outside the consortium to incorporate 

their feedback. RQS 2.0 will be implemented as an online tool within the EuCanImage platform 

or on its separate website (https://www.radiomics.world/rqs2). This tool defines the best 

practices that the AI WGs will follow during their AI tool development lifecycle.  

  Radiomics Quality Score 2.0 is a qualitative assessment tool that advocates the 

use of quantitative measures for AI tool evaluation and validation. WP6 of EuCanImage is 

implementing software pipelines that will carry out the quantitative evaluation of the AI tools 

in light of the principles outlined by RQS 2.0. These software pipelines will be integrated into 

the OpenEBench provided by Barcelona Supercomputing Center. This will allow the 

visualisation of the important assessment metrics satisfying the RQS 2.0 on OpenEBench 

platform. RQS 2.0 will lead to the development of AI tools within the EuCanImage consortium 

that are closer to the goal of clinical translation. 
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