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Executive Summary  

Synthetic data are rapidly gaining recognition as a privacy-preserving methodology to 

share medical information between distrustful parties or publishing anonymous copies of 

data sets in public digital spaces without revealing personal or sensitive information. 

Generative algorithms, on the other hand, have shown to be able to preserve statistical 

properties of the underlying original distributions providing training sets for machine 

learning tool. These frameworks suffer from the issue of data scarcity, especially in regards 

to images carrying clinically relevant features which may be scarce in original datasets. 

For these reasons a key goal of this task was to implement generative pipelines which 

were, on one side, demonstrably guaranteeing privacy and on the other capable of 

producing synthetic data containing specific clinical features (attribute selection) even 

when such features were not sufficiently represented in original data. Progress made 

during the task in this direction demonstrated real potential.  

The long term goal is to compose, for instance, mammograms positive for calcified 

nodules, by composing a "collage" of healthy tissues, nodules and calcifications in a 

clinically realistic image. While more work is needed on this front, Attention Mechanism, 

has shown to be a very effective method in this regard.   

The other main area of this task has focused on the successful design and implementation 

of Medigan, a public, web-based environment for the management and distribution of 

synthetic data assets and of generative pipelines.  

Parts of the task, namely the provision of enhanced data sets for the execution of other 

project's tasks are not included in the scope of this document. As data sources from 

participating centers become available, the tools developed during the task will be refined 

and applied to generation of target data assets.    
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1 Generating clinically relevant synthetic data  

In order to create large samples of synthetic cancer images that accurately reflect clinical 

features (such as age, gender, lesion type, malignancy, location, and size), we created a 

user-friendly toolset leveraging Generative Adversarial Networks (GANs), which produce 

artificial cancer images for various imaging modalities (such as MRI and CT) under specific 

cancer circumstances (i.e. Conditional GANs: CGANs). This method controls the 

appearance of the cancer image generated by using important cancer variables (such as 

morphology, cancer stage, background tissue density, and scanner manufacturer) in 

addition to the features collected from the image. This enables, for instance, to create a 

specific breast cancer (triple negative breast cancer) of a specific size in a particular 

background region (fatty, scattered fibroglandular tissue, heterogeneously packed, highly 

dense), all while simulating a particular scanner (e.g. Hologic Selenia Dimensions). In 

future work, this model will enable the development of multi-parameter and multi-vendor 

cGAN models for cancer imaging datasets.  

1.1 Synthetic Data and Privacy Protection  

There was significant appeal to publishing data that represented "no genuine individual's" 

reactions when Rubin (1993) established the concept of totally synthetic data. Research 

after that has sufficiently shown the viability, but the fundamental query, "To what extent 

does the synthetic data process give protection?" remained largely unaddressed. Since 

then privacy in databases has evolved a well-defined framework that enables a synthesis 

of the methods used for disclosure restriction and privacy-preserving data mining also with 

the intent of creating synthetic copies of original data, allowing to create privacy-

guaranteed copies of the underlying information, in order to measure the protection 

provided by synthetic data and the ensuing analytical validity of the release data. 

Several frameworks developed within EuCanImage such us: 

● High-resolution synthesis of high-density breast mammograms: Application to 

improved fairness in deep learning based mass detection 

(https://arxiv.org/abs/2209.09809) 

● Sharing Generative Models Instead of Private Data: A Simulation Study on 

Mammography Patch Classification (https://arxiv.org/abs/2203.04961) 

● nn-UNet Training on CycleGAN-Translated Images for Cross-modal Domain 

Adaptation in Biomedical Imaging 

(https://link.springer.com/chapter/10.1007/978-3-031-09002-8_47) 

This is particularly relevant in medical data, and even more in medial images which are 

the most privacy sensitive type of health information. 

In this view Lynkeus has developed and generative models which integrate Differential 

Privacy. Due to their elegant theoretical base and strong empirical performance as 

generative models, they have recently gained intense academic interest. In research when 

there is a lack of data, these techniques offer a promising direction. Due to the high model 

complexity of deep networks, one typical problem with GANs is that the density of the 

learnt generative distribution could focus on the training data points, making it easy for 

them to remember training samples. When GANs are used to analyze sensitive or private 

data, such as patient medical records, the concentration of distribution raises serious 

security concerns because it could reveal vital patient information. To solve this problem, 

Differentially Private GAN (DPGAN) model was introduced. In this model, differential 

privacy established in GANs by carefully constructing noise to be added to gradients during 

the learning process. DPGANs can produce high-quality data points with a respectable level 

https://arxiv.org/abs/2209.09809
https://arxiv.org/abs/2203.04961
https://link.springer.com/chapter/10.1007/978-3-031-09002-8_47
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of privacy. We developed DPGAN implementation which can be found in GitHub 

(https://github.com/athenarc/DPGANs). Also, relative work that our implementation was 

based on can be found in the above repository. 

2 Technical Design 

In terms of design choice, the most important factor is the resolution of generated images. 

A major constraint when resolution images generated is that current approaches failed to 

generate images with high resolution. We used taming transformers for high resolution 

image synthesis. Taming transformers bring transformer models to high-resolution picture 

synthesis up to the megapixel range and to take use of their highly promising learning 

capabilities. In order to produce locally realistic and globally consistent patterns, high-

resolution image synthesis needs a model that comprehends the global composition of 

images. As a result, rather than describing an image with pixels, we instead compose it 

with codebook components that are perceptually rich. The description length of 

compositions can be drastically decreased by learning an efficient code, which enables us 

to effectively model their global interrelations within images using a transformer 

architecture. In both an unconditional and a conditional environment, this method may 

produce high quality images that are realistic and consistent. In the following diagram you 

can see more about the architecture that taming transformer followed: 

 

Figure 1: Overview of the transformer architecture 

In the above figure, context-rich visual portions are learned as a codebook using a 

convolutional VQGAN, and their composition is then modeled using an autoregressive 

transformer architecture. The interface between these systems is a discrete codebook, and 

a patch-based discriminator allows for substantial compression while maintaining good 

perceptual quality. With this technique, high resolution picture synthesis based on 

transformers is made more effective. 

We used the Azure Machine Learning Framework to get access into multiple GPU 

environments, due to high demand of GPU cores in order to train the model. Also, the 

model needed a specific GPU chipset to run and also required GPUs with more than 16GB 

of memory. So we created the environment on Azure, and then we tried different compute 

instances to find one that actually works. A compute instance is a fully managed cloud-

based workstation optimized for your machine learning development environment. 

2.1 Process 

In order to synthesize images using the extremely expressive transformer architecture, 

we planned to express an image's component parts as a sequence. Complexity demands 

https://github.com/athenarc/DPGANs
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a method based on a discrete codebook of learnt representations rather than building on 

individual pixels. 

To use the taming transformers, first we needed to learn an effective codebook of image 

constituents to use in transformers. In order to synthesize images using the extremely 

expressive transformer architecture, we needed to express an image's component parts 

as a sequence. Complexity demands a method based on a discrete codebook of learnt 

representations rather than building on individual pixels. Then, we needed to push the 

boundaries of compression and learn a comprehensive codebook in order to use 

transformers to represent images as a distribution over latent image elements. In order 

to achieve this, we used VQGAN, an alternative to the original VQVAE, which uses a 

discriminator and perceptual loss to maintain decent perceptual quality at higher 

compression rates. This is in contrast to earlier efforts that merely applied a shallow 

quantization model before applying pixel-based and transformer-based autoregressive 

models on top of it. 

As a next step, we needed to learn the composition of images with transformers. When 

creation of a codebook is completed, we basically have to represent images in terms of 

the codebook-indices of their encodings. Then, we feeded this codebook to the 

transformer, in order to generate high resolution images. 

3 Experiments 

During the execution of the model, we made several attempts before tuning the model 

and finally got a high resolution image. We had to tune the VQGAN to produce perceptually 

rich codebooks. 

3.1 Datasets 

We tested our model in two datasets. Those datasets are Breast Cancer Digital Repository 

(Breast Cancer Digital Repository (bcdr.eu)) and INBreast data set (INbreast: toward a 

full-field digital mammographic database - PubMed (nih.gov)) both publicly available, 

extensive and well curated sets of mammographic images. 

3.2 Results 

Our first approach started generating images reaching a realistic overall shape but with 

very pixelated content as shown below: 

 

 

Figure 2: First approach of image generator 

We needed to make several adjustments in the model, and also change the infrastructure 

we used. After those adjustments our approach seems to work a lot better and the 

produced image is shown below: 

https://bcdr.eu/information/about
https://pubmed.ncbi.nlm.nih.gov/22078258/
https://pubmed.ncbi.nlm.nih.gov/22078258/
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Figure 3: Examples of generated image 

As shown above the model learned key and clinically realistic aspects of breast tissue 

(varying tissue densities and pattern of fibrosis, nipple location and rough anatomy) 

demonstrating actual potential in this methodology, while more data and further 

adjustment to the model will be required.  

4 User-Friendly Data Synthesis Toolbox 

We furthermore deliver medigan, a user-friendly toolbox for generating diverse sets of 

synthetic imaging data across modalities, organs, domains, and conditioning 

characteristics. The medigan toolbox is implemented as an open-source framework-

agnostic Python library based on multiple pretrained generative models for automated and 

user-friendly synthetic data generation as shown in Figure 4.  

 
Figure 4: Overview of the open-source medigan toolbox for synthetic data generation 

 

End-user requirement gathering is recommended for the development of trustworthy AI 

solutions in medical imaging. Therefore, we organised requirement gathering sessions with 

potential end-users, model contributors and stakeholders from the EuCanImage 
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Consortium. After gathering end-user requirements, design decisions based on usability, 

technical feasibility, and scalability are formulated as detailed below in Table 1.  

 

Subsequently, we implement medigan based on modular components for generative model 

(i) execution, (ii) visualisation, (iii) search & ranking, and (iv) contribution. medigan is 

built with a focus on simplicity and usability. The integration of pretrained models is 

designed as internal Python package import and offers simultaneously (a) high flexibility 

to and (b) low code dependency on these generative models. The latter allows the reuse 

of the same orchestration functions in medigan for all model packages. From a user 

perspective, medigan allows researchers and developers to create, increase, and domain-

adapt their training data in just a few lines of code. 

 

 
Table 1: Overview of requirements gathered together with potential end-users next to the 

respective design decisions taken towards fulfilling these requirements in medigan. 

 

The toolbox is easily integrable into other packages and tools, including commercial ones. 

Synthetic data can enhance the performance, capabilities, and robustness of data-hungry 

deep learning models as well as to mitigate common issues such as domain shift, data 

scarcity, class imbalance, and data privacy restrictions. Training one’s own generative 
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network can be complex and expensive since it requires a considerable amount of time, 

effort, specific dedicated hardware, carbon emissions, as well as knowledge and applied 

skills in generative AI. An alternative and complementary solution is the distribution of 

pretrained generative models to allow their reuse by AI researchers and engineers 

worldwide. 

 

medigan can help to reduce the time to run synthetic data experiments and can readily be 

added as a component, e.g., as a torch dataloader, in AI training pipelines. As such, the 

generated data can be used to improve supervised learning models during training or fine-

tuning, but can also serve as plug-and-play data source for self/semi-supervised learning, 

e.g., that pretrain models for a clinical downstream task.  

 

Apart from that, medigan contains a generative model visualisation feature that allows 

users to explore how changes to the model input affect the synthetic data the model 

creates. As shown in Figure 5, users can adjust the input latent variables (alias random 

noise vector) that GANs use to generate images variations. Furthermore, users can adjust 

the conditional information that is input into conditional models (e.g. cGANs). In Figure 5, 

medigan’s model 8 is visualised, which allows to adjust the malignancy (malignant/benign) 

of a generated synthetic mammogram-based tumour mass image.  

 

 
Figure 5: Example of model visualisation feature in the medigan toolbox: Malignancy conditioned 

tumour mass generation based on a conditional GAN. 

 

The scalability and design of medigan is demonstrated by its growing number of integrated 

and readily-usable pretrained generative models, which include 21 models utilising 9 

different Generative Adversarial Network architectures trained on 11 different cancer 

imaging datasets with the aim of solving specific cancer imaging challenges. Any type of 

generative model can be integrated into medigan with the ones to date already spanning 

a range of applications across modalities such as mammography, endoscopy, x-ray, and 

MRI. Among others, medigan contains 2 conditional DCGAN models (e.g., conditioned on 

tumour mass malignancy in mammograms), 6 domain translation CycleGAN models (e.g., 
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conditioned on breast density in mammograms or MRI acquisition protocol) and 1 mask-

to-image pix2pix model conditioned on tumour mass shapes in mammograms. Models 

allow to generate samples of different pixel resolutions ranging from regions-of-interest 

patches of size 128x128 and 256x256 to full images of 1024x1024 and 1332x800 pixels. 

The aforementioned VQGAN model we developed using taming-transformers is also 

planned to be integrated into and distributed via medigan. medigan enables the 

community to reuse, access, and build on the synthetic data generation efforts and 

achievements of EuCanImage. medigan is publicly available in its associated GitHub 

repository (https://github.com/RichardObi/medigan). The meta-information of the 

medigan library with links to documentation (https://medigan.readthedocs.io/) and 

distribution (via the python packaging index, https://pypi.org/project/medigan) are shown 

below in Table 2. 

     

 
Table 2: Information overview of the medigan library 

 

5 Conclusions  

This task delivered both a mature framework to store, managed and distribute synthetic 

data assets and generative tool, and a promising albeit initial new framework for the 

creation of synthetic data sets with attribute selection. Despite time limitations, the teams 

will keep working on the evolution of generative framework aiming at providing synthetic 

data assets based on well defined data requirements from the AI teams once these will 

become available.    
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