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Executive Summary  

Standardising imaging data is a critical step in the field of medical image analysis. Before 

applying machine learning or deep learning techniques on these images/features, the data 

need to be ‘cleaned’ and standardised to attain maximum reproducibility. In this context, we 

introduce the precision-medicine-toolbox that allows researchers to perform data curation, 

image pre-processing and handcrafted radiomics feature exploration tasks. This toolbox will 

also benefit the researchers without a strong programming background to implement these 

critical steps and increase the reproducibility of quantitative medical imaging research. 

Furthermore, we deliver a guideline document that informs researchers in standardizing 

imaging data at both image level and feature level. With the help of MLToolbox (built on top 

of WORC), precision-medicine-toolbox and guideline document, consensus will be reached 

with the AI developers on defining the pre-processing pre-sets per use case. The goal is to 

eventually define these pre-sets and apply them in XNAT so that pre-processed images are 

readily available to download.  
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1 Introduction 

The basis for this task is divided into 3 tiers. First, the ML Toolbox that is built on top of the 

existing WORC framework (Starmans et al. 2021) and integrated in the VRE. This toolbox 

consists of various pre-processing steps such as clipping with defined intensity boundaries, z-

score/min-med  normalization, resampling the voxels spacings and bias field correction. The 

MLtoolbox also consists of ComBat tool for feature harmonization. Second, we deliver 

precision-medicine-toolbox that is an open-source toolkit that would aid the AI developers in 

their pre-processing pipelines if they wish to tailor the process for example, locally running 

pre-processing functions on imaging data according to their needs. This toolbox further 

provides insights on handcrafted radiomic features by performing exploration tasks by 

visualizing and calculating basic statistics. Third, we deliver the review paper ‘Making 

radiomics more reproducible across scanner and imaging protocol variation: A review of 

harmonization methods’ which would serve as a basis for the guideline document. The next 

step after this deliverable is to come to a consensus with the AI developers and decide on the 

pre-processing pre-sets  per use case. The plan is to implement these pre-sets in the XNAT 

itself to be able to download data that is already pre-processed. Refer Figure 1 for the 

overview of this task in the EuCanImage workflow. 

 

Figure 1 Overview of Task 4.5 

2 Image standardization toolbox 

Medical image analysis plays a key role in precision medicine as it allows the clinicians to 

identify anatomical abnormalities and it is routinely used in clinical assessment. Data curation 

and pre-processing of medical images are critical steps in the quantitative medical image 

analysis that can have a significant impact on the resulting model performance. In this task, 

we introduce a precision-medicine-toolbox [1] that allows researchers to perform data 

curation, image pre-processing and handcrafted radiomics extraction (via Pyradiomics) and 

feature exploration tasks with Python. With this open-source solution, we aim to address the 

data preparation and exploration problem, bridge the gap between the currently existing 

packages, and improve the reproducibility of quantitative medical imaging research. The 

https://paperpile.com/c/9Yxw2F/5ZQz
https://paperpile.com/c/9Yxw2F/uWHU
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precision-medicine-toolbox that was developed in line with this task and would allow AI 

developers to perform certain image pre-processing tasks if they want to do it locally or in 

case they want to customize their pre-processing pipeline.  

2.1 The precision-medicine-toolbox 

 
The precision-medicine-toolbox allows researchers to perform data curation, image pre-

processing and handcrafted radiomics feature exploration tasks. This toolbox will also benefit 

the researchers without a strong programming background to implement these critical steps 

and increase the reproducibility of quantitative medical imaging research. The functionalities 

of the toolbox are shown in Figure 2.  

 

 

Figure 2 Overview of the precision-medicine-toolbox 

The imaging module allows for pre-processing and exploration of the imaging datasets. 

Currently, the following functions are implemented:  

 

• dataset parameters exploration by parsing of the imaging metadata,  
• dataset basic quality examination, including check of imaging modality, slice thickness, 

number of slices, in-plane resolution and pixel spacing, and reconstruction kernel,  

• conversion of DICOM dataset into volumetric Nearly Raw Rusted Data (NRRD) dataset,  
• image basic pre-processing, including bias field correction (for MRI) , intensity rescaling and 

normalization, histogram matching, intensities resampling, histogram equalization, image 
reshaping,  
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• unrolling NRRD images and ROI masks into Joint Photographic experts Group (JPEG) slices 

for a quick check of the converted images or any existing NRRD or MetaImage Medical Format 
(MHA)dataset,  

• radiomics features extraction from NRRD/MHA data using PyRadiomics package. 
 

Furthermore, this model also includes a features module that allows for the exploration of the 

feature datasets. It allows for the basic analysis of the features. Currently, the following 

functions are implemented: 

● visualization of feature values distributions in classes,  

● visualization of features mutual Spearman correlation matrix,  

● calculation of corrected p-values for Mann-Whitney test for features mean values in 

groups,  

● visualization of univariate receiver operating characteristic (ROC) curves for each 

feature and calculation of the area under the curve (AUC),  

● volumetric analysis, including visualization of volume-based precision-recall curve and 

calculation of Spearman correlation coefficient between every feature and volume,  

● calculation of basic statistics (number of missing values, mean, std, min, max, Mann-

Whitney test p-values for binary classes, univariate ROC AUC for binary classes, 

Spearman’s correlation with volume if volumetric feature name is sent to function) for 

every feature. 

 

The precision-medicine-toolbox is implemented in Python (Python Software Foundation, 

Wilmington, DA, U.S.) and requires version 3.6 or higher. The source code is hosted on 

GitHub (https://github.com/primakov/precision-medicine-toolbox) and Zenodo platform 

(DOI 10.5281/zenodo.6126913). The precision-medicine-toolbox package has been released 

under the BSD-3-Clause License and is available from the Python Package Index (PyPI) 

repository (https://pypi.org/project/precision-medicine-toolbox/). An easy installation of the 

latest version is possible with “pip install precision-medicine-toolbox” command. The project 

has the following structure: 

● README.MD:file with the project overview,  

● Requirements.txt: file with the list of the packages to be installed,  

● LICENSE: statement of the license applicable to the project’s software and 

manuscripts, • .gitignore: specification of the files, intentionally untracked by Git,  

● .readthedocs.yaml: Read the Docs configuration file,  

● Mkdocs.yml: Mkdocs configuration file,  

● Setup.cfg and setup.py: configuration files for PyPi package,  

● Data: folder with the raw data for the examples as well as generated files,  

● Docs: folder with the documentation files,  

● Examples: folder with the examples: 

○ Imaging_module.ipynb: tutorial illustrating functionality for the imaging 

datasets, 

○ Features_module.ipynb: tutorial illustrating functionality for the features 

datasets,  

● Pmtool: folder with the toolbox scripts: 

○ __init__.py: initialization file, 

https://github.com/primakov/precision-medicine-toolbox
https://pypi.org/project/precision-medicine-toolbox/
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○ data_set.py: script defining the base class for imaging datasets, 

○ tool_box.py: script defining the inheriting class for imaging datasets methods, 

○ features_set.py: script defining the base class for features datasets, 

○ analysis_box.py: script defining the inheriting class for features datasets 

methods. 

 

3 Guidelines for standardizing imaging data 

This section contains general guidelines that would eventually aid in standardizing imaging 

data at both image level and feature level. This section will briefly cover three topics under 

the deliverable: (1) guidelines to classify image acquisition protocols, (2) standardised 

definitions of features and (3) identification of reproducible radiomic features. For detailed 

information on guidelines related to harmonization strategies, to make radiomic features more 

reproducible, we deliver a narrative review ‘Making Radiomics More Reproducible across 

Scanner and Imaging Protocol Variations: A Review of Harmonization Methods’ [2]. 

Different harmonization solutions are discussed and divided into two main categories: image 

domain and feature domain. The image domain category comprises methods such as the 

standardization of image acquisition, post-processing of raw sensor-level image data, data 

augmentation techniques, and style transfer. The feature domain category consists of 

methods such as the identification of reproducible features and normalization techniques such 

as statistical normalization, intensity harmonization, ComBat and its derivatives, and 

normalization using deep learning. We also reflect upon the importance of deep learning 

solutions for addressing variability across multi-centric radiomic studies. The overall objective 

of this review is to address the advantages, disadvantages, and challenges posed by these 

harmonization methods. Figure 3 shows an overview of different harmonization methods that 

are applicable at different stages of medical imaging. 

https://paperpile.com/c/9Yxw2F/TMDj
https://www.mdpi.com/2075-4426/11/9/842#fig_body_display_jpm-11-00842-f002
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Figure 3 Overview of harmonization methods at different stages of medical imaging 

A powerful radiomics approach involves the extraction of various quantitative features from 

medical images, storing this data in a federated form of database [3] where several individual 

databases function as an entity, and successive mining of data to acquire relevant clinical 

outcomes [4]. Large quantities of data are required to develop robust predictive models and 

this amount of data is usually obtained from multiple hospitals and/or institutions. 

Furthermore, due to continuous improvement in scanner and protocol settings, this type of 

data is a moving target. To compensate for the effects scanner/protocol variability might have 

on the predictive models, large quantities of data are needed to make systems generalize. In 

these cases, federated (or distributed) learning could be adapted so as to allow sharing of 

data between hospitals/institutes to develop robust predictive models [4]. Major management 

problems still exist even though there are databases that are collecting and cross-referencing 

massive amounts of radiomics information in addition to other related patient data from 

millions of case studies [5–8]. 

Radiomic feature extraction can be categorized into two main approaches: hand-crafted 

(derived from traditional statistical and computer vision methods) and deep learning (DL). 

Hand-crafted radiomics characteristics (such as texture, shape, intensity) provide information 

on the particular area of the medical imaging scan, often referred to as the region or volume 

of interest (ROI or VOI), which could be a tumour, a tissue or an organ as a whole [9]. DL 

algorithms learn complex visual features and perform ROI segmentation using cascading 

layers with non-linearities by using ‘sliding’ kernels in convolutional neural networks (CNN), 

while hand-crafted features represent the spatial appearances (texture and shape) by 

https://paperpile.com/c/9Yxw2F/kvA9c
https://paperpile.com/c/9Yxw2F/AvfHe
https://paperpile.com/c/9Yxw2F/AvfHe
https://paperpile.com/c/9Yxw2F/YCV52+EPYwq+DZjf3+s53rd
https://paperpile.com/c/9Yxw2F/KGxB3
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mathematically extracting spatial distribution on inter-pixel relationships, signal intensities, 

gray-scale patterns and spectral properties [10]. DL has the benefit of not necessarily 

requiring prior segmentation masks of the medical imaging scan. However, DL is a ’black box’ 

approach, i.e. the lack of interpretability of the models and the deep features generated are 

seen as a key limitation in clinical applications [11]. DL also requires a larger amount of data 

and/or pre-trained models often trained on diverse domains (e.g. photographic images), in 

order to perform efficiently and effectively. The vast majority of published radiomic models 

lack consistent evaluation of performance, sufficient large-scale annotated datasets for 

radiomic studies, reproducibility, clinical efficacy, and large-scale validation on sufficiently 

large cohorts, despite these being prerequisites for clinical translation [12,13]. Furthermore, 

there is a lack of reproducibility of radiomic features while translating results into clinical 

practice [14]. Ideally, the features extracted using radiomics represent imaging biomarkers 

and should be independent of image acquisition parameters or protocols [15]. For example, 

if a patient is scanned in different hospitals, the quantitative features extracted from all these 

scans should either have similar values or the correct transformation should be known. 

Scanner protocols and hardware are constantly changing over time and differ across hospitals. 

The same scanner can also be configured differently. Frequent software updates might have 

an influence on images produced. A major consequence of these scanner and protocol 

variations is a domain shift [16], i.e. a shift in data distribution across various 

centres/time/machines/software.  

3.1 Guidelines to classify image acquisition protocols 

For multicentric prospective studies, the ideal way to standardise radiomic features is to define 

and follow imaging protocols that define scanner types in conjunction with acquisition and 

reconstruction parameters. For example, the European Society for Therapeutic Radiology and 

Oncology (ESTRO) panel provides guidelines for procedures and methods for image-guided 

radiation therapy (IGRT) in prostate cancer [17,18]. This panel consulted a large base of the 

radiation oncology community from the European Union and developed guidelines for 

delineating localized prostate cancer in (computed tomography) CT and magnetic resonance 

images (MRI). ESTRO also has a working group focusing on cervical carcinoma for developing 

and validating methods and imaging parameters from various institutions [19]. For 

standardization of PET imaging, the European Association of Nuclear Medicine (EANM) [20] 

launched the EARL (EANM Research Ltd) program covering areas such as scan acquisition, 

processing of images, and image interpretation. Pfaehler et al. [21] conducted a study to 

investigate the effects of harmonizing image reconstructions on feature reproducibility and 

concluded that EARL compliant image reconstruction harmonized a wide selection of radiomic 

features. A similar initiative by the American Society for Radiation Oncology (ASTRO) [22] 

was created to develop a ‘practice parameter’, for IGRT and to provide quality assurance 

standards, personnel qualifications, indications and guided documentation [23] for imaging. 

In MRI, however, such guidelines do not exist [24] and most of the MRI modalities are not 

even quantitative [25]. Efforts have been taken in the past, concerning MRI imaging, for 

example by UCHealth [26] to reduce the number of MRI protocols from 168 to 66 across 

scanners and centres by selecting an appropriate clinics-driven protocol and standardization 

process. Another set of guidelines is provided by the FDA (Food and Drug Administration) 

https://paperpile.com/c/9Yxw2F/EXtw8
https://paperpile.com/c/9Yxw2F/GTzwM
https://paperpile.com/c/9Yxw2F/51tBE+EediS
https://paperpile.com/c/9Yxw2F/hmF6x
https://paperpile.com/c/9Yxw2F/uDLOi
https://paperpile.com/c/9Yxw2F/0Z6W3
https://paperpile.com/c/9Yxw2F/4p2EA+eOulk
https://paperpile.com/c/9Yxw2F/qXTUk
https://paperpile.com/c/9Yxw2F/jjaBP
https://paperpile.com/c/9Yxw2F/l1Ivs
https://paperpile.com/c/9Yxw2F/18xBp
https://paperpile.com/c/9Yxw2F/7Xqvw
https://paperpile.com/c/9Yxw2F/KtSc0
https://paperpile.com/c/9Yxw2F/EsYGz
https://paperpile.com/c/9Yxw2F/Uj7WX
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[27] to focus on image acquisition in clinical trials conducted to support the authorization of 

drugs and biological products. Ever since this draft by FDA was released in 2015, it has 

become a reference standard for most promoters and industries of clinical trials. Another such 

way to ensure that the protocols are well documented could be by following Transparent 

Reporting of Medical Image Acquisition (TRIAC [28,29]) guidelines for future proof radiomics 

or if a public protocol is used. TRIAC guidelines describe five different levels of evidence for 

reporting imaging protocols.  

● Level 0 indicates that the protocol has not been formally approved with a reference 

number 

● Level 1 indicates that the protocol has been approved with a reference number in the 

archive of the department 

● Level 2 indicates that the protocol has been approved with formal quality assurance  

(recommended minimum level for prospective trials) 

● Level 3 indicates that the protocol is established internationally and has been published 

in guideline documents and peer-reviewed papers 

● Level 4 indicates that the protocol is Future proof i.e., the protocol follows TRIAC Level 

3, FAIR principles and retains raw data.  

 

It would be worthwhile to work with raw sensor-level data, right before reconstructing the 

image and apply harmonization methods on it to remove scanner and protocol variability. 

Image reconstruction, necessary for human viewing and interpretation, combined with the 

manual contouring variability, could lead to loss of latent raw sensor-level image data and 

lower precision in measurements. Most machine learning (ML) and DL algorithms have been 

used on reconstructed images in the existing medical imaging workflow. Instead, the abilities 

of ML and DL could be leveraged to process the underlying raw sensor-level data to access 

its hidden nuances [30–32]. Radiomics signature analysis can also be performed directly on 

the raw image data without the need for reconstruction which adds bias and variability 

[33,34]. Furthermore, the reconstruction process itself can also be considered as a prediction 

problem utilising raw CT data (sinograms) or k-space values of MRI inputs [35]. These studies 

widen the scope to apply harmonization methods on raw image data and take advantage of 

the hidden information in the raw image data rather than applying it in the reconstructed 

image-space [2].  

Reporting the scanner hardware settings, image acquisition, and reconstruction methods are 

also critical in view of standardizing imaging protocols. Most of the radiomics studies include 

retrospective datasets that have already been imaged in the past with pre-set scanner/s and 

standardizing imaging protocols at this point might not be feasible. To tackle this either pre-

processing of images could be done before image analysis or a phantom study could be 

performed to detect inter-scanner differences and vendor-dependent features to assess the 

feature robustness [36–41]. This is intended to increase feature reproducibility. Few pre-

processing methods have been used in previous work including isotropic voxel resampling, 

bias field correction [42], normalizing intensity scales using histogram equalization [43,44], 

gray-level discretization [45], and processing of raw sensor-level image data [33,46]. Pre-

https://paperpile.com/c/9Yxw2F/DDmnu
https://paperpile.com/c/9Yxw2F/c9tVk+bBgyD
https://paperpile.com/c/9Yxw2F/6raiG+bWzqZ+zojRq
https://paperpile.com/c/9Yxw2F/XcIMk+8u1Xr
https://paperpile.com/c/9Yxw2F/Q88n2
https://paperpile.com/c/9Yxw2F/TMDj
https://paperpile.com/c/9Yxw2F/bFiWC+E1SGT+aF37B+Dyq5E+5ChFC+crjOI
https://paperpile.com/c/9Yxw2F/Rj2x6
https://paperpile.com/c/9Yxw2F/4Rf0m+USxZ1
https://paperpile.com/c/9Yxw2F/fPV3E
https://paperpile.com/c/9Yxw2F/XcIMk+lYEDz
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processing step is crucial for standardizing heterogeneous datasets to increase the 

reproducibility of features [29]. Acquiring images from individuals at multiple time points also 

allows analysing feature robustness across temporal variabilities (e.g., organ movement). 

Once the model has been decided, defining model constraints is crucial for its development. 

E.g., defining inclusion and exclusion criteria for model inputs; detecting and eliminating 

biases (e.g., sex, ethnicity, socio-economic factors, data imbalance) occurring due to diversity 

and distribution across diverse patient groups within the dataset/s. 

 

3.2 Standardised definitions of features following the recommendations of Image 

Biomarker Standardization Initiative (IBSI) 
 

The IBSI aimed to standardise the extraction of radiomic features which were assessed in 

three phases [29]. One of the reasons for lack of reproducibility of radiomic features is the 

scarcity of consensus-based guidelines and standardised definitions for the process of high-

throughput extraction of quantitative features, eventually meant to aid clinical decision 

support systems. A total of 169 radiomic features were standardised which further verified 

and calibrated different radiomics softwares. A reference manual [47] is available that 

presents efforts to chart a course through part of this frontier by presenting consensus-based 

recommendations, guidelines, definitions and reference values for image biomarkers and 

defining a general radiomics image processing scheme. This manual will help improve the 

reproducibility of radiomic studies. This reference manual is divided into several chapters that 

describe processing of acquired and reconstructed (medical) imaging for high-throughput 

computation of image biomarkers (Chapter 2: Image processing) [48]; that define a diverse 

set of image biomarkers (Chapter 3: Image features) [49]; that describe guidelines for 

reporting on radiomic studies and provide nomenclature for image biomarkers (Chapter 4: 

Radiomics reporting guidelines and nomenclature) [50]; and that describe the data sets and 

image processing configurations used to find reference values for image biomarkers (Chapter 

5: Reference data sets) [51]. 

 

3.3 Identification of reproducible features 
 

Various studies have tested the reproducibility, variability and repeatability of features 

extracted from various phantom and patient studies over different reconstruction and 

acquisition parameters in the case of multi-centric datasets and examine the reproducibility 

of radiomic features. High reproducibility can be assessed by improving the intra-individual 

reproducibility, multi-centre/multi-machine reproducibility, multi reader reproducibility, 

image reconstruction and pre/post-processing methods. Clustering based techniques such as 

k-means clusters, principal component analysis and t-distributed stochastic neighbour 

embedding can be utilised to visualize and measure inter-class/intra-class correlation.  

Conducting test-retest studies on phantoms could contribute towards reproducibility. Using a 

phantom allows a controlled analysis that isolates the variation due to scanner variation from 

other variations related with patient acquisition. Phantoms can also be scanned by specific 

scanners with special clinical settings to specifically improve the normalization of the features 

https://paperpile.com/c/9Yxw2F/bBgyD
https://paperpile.com/c/9Yxw2F/bBgyD
https://paperpile.com/c/9Yxw2F/YJ1F
https://paperpile.com/c/9Yxw2F/Q7LM
https://ibsi.readthedocs.io/en/latest/03_Image_features.html#chap-image-features
https://paperpile.com/c/9Yxw2F/lK1p
https://paperpile.com/c/9Yxw2F/BE88
https://paperpile.com/c/9Yxw2F/TnPS
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for clinical use. The normalization could therefore be updated to follow the latest imaging 

advances and standards [2]. Meaningful features could be selected by using intra-class 

correlation coefficient (ICC) and concordance correlation coefficient (CCC) cut-off values so 

as to get rid of redundant features. In case of multiple segmentations, stable features could 

be selected across different annotations so as to reduce the dimensionality of the radiomic 

features.   

In the context of PET images, a study by Shiri et al. [38] investigated the impact of various 

image reconstruction settings on several PET/CT radiomic features obtained from a phantom 

dataset (developed in-house National Electrical Manufacturers Association [NEMA]) and a 

patients dataset from two different scanners. Radiomic features were grouped into intensity-

based, geometry-based and texture-based features and their reproducibility and variability 

were evaluated using the coefficient of variation (COV). The results from both phantom and 

patient studies showed that 47% of all radiomic features were reproducible. Almost half of 

intensity-based and texture-based and all of the geometry-based features were found to be 

reproducible respectively. The intensity and geometry-based features were also found to be 

reproducible in another study by Vuong et al. [52], where the authors investigate if the PET/CT 

radiomics models can be transferred to PET/MRI models by checking the reproducibility of 

radiomic features against different test-retest and attenuation correction variability. However, 

Shiri et al. [38] used a phantom body filled with homogeneous activity rather than 

heterogeneous activity, which does not properly imitate the human tissue. A similar study by 

Bailly et al. [53] analysed the reproducibility of texture features in PET scans across different 

acquisition and reconstruction parameters in the context of multi-centre trials. They found 

out that only a few features were strongly reproducible and acceptable for multi-centre trials. 

Nevertheless, this study checked the reproducibility of texture features evaluated against 

reconstruction parameters coming from just one manufacturer. Many such studies have been 

carried out to check the reproducibility of radiomic features in PET scans [54–68] where they 

only assess the impact of variability in scanner and imaging parameters and do not provide 

concrete image and/or feature harmonization methods to obtain reproducible features.  

In the case of CT scans, Prayer et al. [39] conducted a trial to investigate the inter-and intra-

scanner repeatability and reproducibility of computed tomography (CT) radiomic features 

(radiomic feature) of fibrosing interstitial lung disease (fILD). The dataset was obtained from 

IRB-approved test-retest study with sixty fILD patients. Results showed that intra and inter-

scanner reproducibility were highly affected by the variation in slice thicknesses than the 

variation in reconstruction kernels under study and were reconstruction parameter-specific 

respectively. The CT radiomic features showed excellent reconstruction parameter-specific 

repeatability for the test-retest study. However, the sample size of the data used was small, 

and to check the variability of features only two scanners were used. Careful selection of 

radiomic features is critical to ensure plausible outcomes in heterogeneous CT datasets. 

Similar studies have been conducted in the past where the reproducibility of CT radiomic 

features was investigated using phantom data [69–72] as well as patient data [14,73,74]. 

The phantom studies were carried forward to reduce the exposure to patients however, they 

are not real substitutes of heterogeneous human tissues.  

Considering MRI, a recent study using radiomics to investigate the reproducibility of features 

across several MRI scanners and scanning protocol parameters was carried out using both 

https://paperpile.com/c/9Yxw2F/TMDj
https://paperpile.com/c/9Yxw2F/aF37B
https://paperpile.com/c/9Yxw2F/c4cYz
https://paperpile.com/c/9Yxw2F/aF37B
https://paperpile.com/c/9Yxw2F/vDKO8
https://paperpile.com/c/9Yxw2F/vwj2O+0gs2E+1Dxk6+ZDMTq+mBupz+RmFpF+FosYo+fmokC+XvjHA+JGgY3+JUzSd+Ykavg+MJwvj+N9wjK+CXpEc
https://paperpile.com/c/9Yxw2F/Dyq5E
https://paperpile.com/c/9Yxw2F/7Lnp7+l4KfR+wvHDf+t3QMJ
https://paperpile.com/c/9Yxw2F/4ry2x+hWV5m+hmF6x
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phantom data and patient (volunteer) data by Lee et al. [40]. This study also investigated 

repeatability by measuring the variability of radiomic features using a test-retest strategy. 

The variability of radiomic features across different MRI scanners and protocols was evaluated 

using the ICC and the repeatability was evaluated using the coefficient of variation (COV). 

The COV measurements showed that there was very little difference in the variability between 

filtering and normalizing effects which were used for pre-processing. The ICC measurements 

showed higher repeatability for the phantom data than for the patient data. However, this 

study was not able to prevent the effects of the volunteer’s movements on the radiomic values 

despite simulating movements while scanning. A similar study, conducted by Peerlings et al. 

[41], extracted stable parametric MRI radiomic features with a minimum concordance 

correlation coefficient of 0.85 between data derived from 61 patients’ test and retest apparent 

diffusion coefficient (ADC) maps across various MRI-systems, tissues and vendors. A review 

by Traverso et al. [75] mentions that there are not many phantom studies conducted to 

investigate the reproducibility of MRI radiomic features. Most of them cover various sites such 

as the brain [76,77], the gastro-intestinal tract [78–80] and the prostate [81,82], although 

this limitation was addressed by Rai et al. [83] by developing a novel 3D MRI radiomic 

phantom to assess the robustness and reproducibility of MRI radiomic features across multiple 

centres.  

Furthermore, to correct for image protocol differences, ComBat [84] method can be used. 

ComBat harmonization is a statistical method that was developed originally to harmonize gene 

expression arrays [85]. ComBat was designed to provide estimates of the effects of assigned 

batches which have a single technical difference between each other, while taking into account 

the effect of biological covariates on the variables or features being harmonized. The 

estimations are calculated using Bayesian models, and a location/scale shift is performed 

accordingly to adjust the values of different features. The application of ComBat on radiomics 

features was first introduced by Fortin et al. [84]. The authors used ComBat to harmonize 

cortical thickness measurements calculated on diffusion imaging tensor data to remove 

variations in feature values attributed to differences in acquisition and reconstruction 

parameters. ComBat removes interscanner variability for these measurements and can also 

preserve biological correlations. The ComBat functionality is present in The MLToolbox that is 

built on top of the existing WORC framework [86] and integrated in the VRE.  

 

4 Conclusion 

This task introduces a toolbox, to curate, pre-process imaging data and explore handcrafted 

radiomic features. The precision-medicine-toolbox will benefit the researchers without a 

strong programming background to implement these critical steps and increase the 

reproducibility of quantitative medical imaging research. For this task we also deliver a 

guideline document, an article [2], that informs researchers in standardising imaging data 

at both image level and feature level. The MLToolbox is available on the VRE platform built 

on top of WORC which supports commonly used pre-processing functions.  Moving forward, 

consensus will be attained with the AI developers to decide the pre-processing pre-sets for 

each use case, so that it can be implemented in XNAT. Once this consensus is reached with 

the AI developers, the functionalities can be implemented in XNAT so that the pre-
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processed images are available for further AI development. 
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