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Executive Summary  

Artificial intelligence has demonstrated promising performance on a variety of tasks for 

healthcare using medical images. However, there is a need to understand the decision-making 

process of the AI models for legal, ethical, and troubleshooting purposes. This document 

outlines the development of an interpretability toolbox aimed at improving the transparency 

of both handcrafted radiomics and deep learning solutions in medical imaging. For handcrafted 

radiomics, the toolbox offers tools for generating Shapley Additive Explanations, Local 

Interpretable Model-Agnostic Explanations, and tabular counterfactuals applicable to any 

machine learning model. For deep learning, the toolbox provides functionality to create 

attribution maps for both 2D and 3D classification models, along with an illustrative example 

of generating counterfactual image explanations. Additionally, the toolbox extends the 

counterfactual framework to incorporate layer-wise relevance propagation, allowing for the 

inclusion of clinical variables in decision-making. Finally, the document showcases an example 

platform built with Python and Streamlit, designed to validate these explanations within a 

clinical context, thereby evaluating their usability and value in the decision-making process. 

The interpretability toolbox is available at the following link: 

https://github.com/ZohaibS1995/radiomics_explainability_toolbox. 
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1. Introduction 

The increasing volume of medical imaging data poses challenges for radiologists and 

clinicians, leading to a growing need for tools to aid in diagnosis and decision-making. Deep 

learning (DL), a promising AI technology, has shown exceptional performance in medical 

imaging tasks but faces hurdles in adoption due to its "black-box" nature, which hinders 

transparency and compliance with regulations. Interpretability of DL systems is crucial, as it 

not only unravels the inner workings of algorithms and ensures compliance with legal 

requirements but also fosters clinical trust and reveals hidden insights in imaging data. 

Explainable artificial intelligence (XAI) seeks to make AI systems understandable to end-users 

[1]. Interpretability refers to techniques that elucidate why a DL model makes specific 

predictions in medical image analysis. 

Handcrafted radiomics relies on manually designed features extracted from medical imaging 

data, involving expert-defined characteristics to describe regions of interest. In contrast, deep 

learning employs neural networks to automatically learn and extract intricate patterns and 

features directly from the raw image data, enabling more complex and data-driven 

representations. Both approaches have various techniques for interpretability, such as 

Shapley Additive Explanations [2] for handcrafted radiomics and methods like Grad-CAM [3] 

for deep learning, facilitating the understanding of model decisions and enhancing their clinical 

applicability. 

In this document, we describe the interpretability toolbox that we have developed to enhance 

the explainability of both handcrafted radiomics and deep learning solutions. For handcrafted 

radiomics, we provide an interface to generate Shapley Additive Explanations, Local 

Interpretable Model-Agnostic Explanations, and tabular counterfactuals for any machine 

learning model. For deep learning, the toolbox offers functionality to generate attribution 

maps for 2D and 3D classification models. It also provides an example demonstrating how to 

generate counterfactual image explanations. The counterfactual framework is further 

extended to incorporate layer-wise relevance propagation [4] to include clinical variables in 

the decision-making process. Finally, the toolbox includes an example of a platform based on 

Python and Streamlit, designed to validate explanations in a clinical setting, thereby assessing 

the usability and added value of the explanations in the decision-making process. 

2. Interpretability Methods 

In this section, we briefly describe the different types of interpretability methods included in 

the toolbox as shown in figure 1. The toolbox supports interpretability methods for both 

handcrafted radiomics and deep learning.  
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Figure 1: The interpretability toolbox provides functionalities for generating explanations for both 
handcrafted radiomics and deep learning solutions along with a platform for quantitative evaluation of 

explanations in a clinical setting. 

1. Shapley Additive Explanations 

Shapley Additive Explanations (SHAP) is a method for understanding how individual features 

contribute to the predictions of a machine learning model [3]. SHAP is based on game theory, 

and it provides a way to fairly distribute the credit for a prediction to each feature. In the 

context of AI interpretability, SHAP can be used to answer the question: What is the impact 

of each feature on a particular model's prediction?  

SHAP can be used to generate both local and global explanations, each of which has its own 

benefits. Local explanations explain the predictions of a specific instance or data point. SHAP 

can be used to understand why a particular model made a specific prediction for an individual 

observation. This is useful for understanding how the model works on a case-by-case basis. 

Global explanations provide an overview of model behavior across an entire dataset. SHAP 

can be used to generate summary statistics and feature importance rankings, which offer a 

holistic view of how each feature contributes to the model's predictions. Additionally, SHAP 

includes dependence plots, which visualize the relationship between a feature's value and its 

Shapley values.  

2. Local Interpretable Model Agnostic Explanations 

Local Interpretable Model-Agnostic Explanations (LIME) is a method for understanding why a 

machine learning model makes a particular prediction for a specific data point [5]. It does 

this by creating a simple, interpretable model that mimics the behavior of the original model 

at that point. LIME can be used to explain any type of machine learning model, regardless of 

its complexity. 
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3. Tabular Counterfactual Explanations 

Diverse Counterfactual Explanations with Minimum Latent Effects (DICE-ML) is a method for 

generating counterfactual explanations for machine learning models [6]. Counterfactual 

explanations are examples of how a model's prediction would change if one or more of the 

input features were changed. Dice-ML aims to generate counterfactual explanations that are 

both diverse and meaningful. Dice-ML does this by perturbing the input features in a way that 

minimizes the extent of the perturbations. This ensures that the counterfactual explanations 

are faithful to the original model, but also that they are diverse enough to provide a 

comprehensive understanding of how the model works. 

4. Attribution Maps 
Attribution maps are essential tools for interpreting the decisions made by deep neural 

networks, highlighting which parts of an input contribute most to a model's prediction. These 

maps highlight the important regions of the input image for prediction. Some examples of 

popular attribution methods include GradCAM, Integrated Gradients, Input x Gradient, Guided 

GradCAM, and Guided Backpropagation. Attribution maps have a limitation such that they 

only highlight the region in the input image important for prediction but fail to show how these 

regions contribute towards the model’s output. 

5. Counterfactual Explanations 
Counterfactuals explanations are generated by applying minimal perturbation to the input 

image in such a manner that the prediction of the classifier was switched [1]. Counterfactual 

explanations go one step beyond the traditional heatmaps as they show by generating new 

samples that correspond to the change in prediction of the classifier.  

We trained an MLP using the latent space representations of Variational Autoencoder as an 

input. We can exploit the continuity in the latent space of Variational Autoencoder to perturb 

the latent space and generate new images using the decoder. We followed the methodology 

in [7] to apply the modification to the semantically important pixels for classification using 

the gradient of the classifier.  

6. Counterfactual and Layerwise Relevance Propagation Framework 

Layerwise relevance propagation (LRP) is an attribution method that calculates the 

contribution of each neuron by propagating the prediction backward based on relevance 

scores [8]. The total relevance at each layer of the neural network remains constant, starting 

from the last layer of the classifier. 

Clinical variables can also be integrated within the deep learning network to build models 

based on both images and clinical variables. It is crucial to determine the contribution of each 

clinical variable and the images to the model’s prediction. Using LRP, we can assess the 

contribution of the image input and each clinical variable. Furthermore, image counterfactuals 

can be employed within the LRP framework to understand how changes in the input image 

affect the model’s prediction. 
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3. Interpretability Toolbox 

1. Handcrafted Radiomics  

The explanations generated for any type of handcrafted machine learning model are controlled 

by a config.ini file. The configuration file contains some default parameters. The path of the 

machine learning model saved in “.sav” format needs to be provided, along with the path of 

the test features file in “.csv” format that contains the features used to build the machine 

learning model. The last column of the test features should contain a column labeled “target” 

containing the labels. Figure 2 shows the different options that are present in the configuration 

file. 

 

Figures 3 (A) and (B) show the SHAP global summary plots and SHAP dependence plots for a 

handcrafted radiomics model [9] that are generated using the interpretability toolbox. Figure 

4 (A) and (B) show examples of local explanations using SHAP and LIME methods respectively 

that are generated using the interpretability toolbox. 

Figure 2: The configuration file containing default input options for generating 
different types of explanations for the handcrafted radiomics classifier. 
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Figure 3: A) Global SHAP summary plot for a handcrafted radiomics model, B) Dependence plot for a 
handcrafted radiomics model. 

 

Figure 4: A) Local SHAP plot for a specific instance, B) Local LIME plot for a specific instance. 
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2. Deep Learning 

1. Attribution Maps 

The interpretability toolbox supports the following methods for generating attribution maps 

for PyTorch-based classifiers: GRADCAM, Guided-GRADCAM, Input x Gradient, Guided 

Backpropagation, and Integrated Gradients. These methods are configured using a config.ini 

file. The model definition and pre-processing function need to be edited in the main.py file. 

Figure 5 (A) and (B) show how the interpretability toolbox can be used to generate 

explanations for 2D medical images, and Figure 5 (C) shows an example of attribution maps 

for a 3D image. 

 

Figure 5: A) and B) show attribution maps for 2-dimensional X-ray and SWE images and C) shows 
attribution maps for a 3-dimensional CT image. 

2. Counterfactual Explanation 

We demonstrate the process of generating counterfactual explanations using a variational 

autoencoder for post-hepatectomy liver failure using 2-dimensional SWE images. The process 

for generating counterfactuals using the interpretability toolbox involves three steps. The first 

step is to train the variational autoencoder in an unsupervised manner to generate latent 

representations. The second step is to train the deep learning classifier for the task at hand. 

The third step is to generate the counterfactuals by traversing the latent space of the 

variational autoencoder with respect to the classifier. Four examples of counterfactual 

explanations for images with different predicted probabilities are shown in Fig. 6. 
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Figure 6: Four examples of counterfactual explanations generation for the VAE-MLP model. The first 
column showed the original images with the classifier’s predicted probability shown below each image. 
The second column showed the corresponding reconstructed image. For the input image in the first 

column, our model generates a series of counterfactual images as explanations with predicted 

probabilities of 0.1, 0.3, 0.5, 0.7, and 0.9, which were shown in the right part of the figure. 

3. Counterfactual and Layerwise Relevance Propagation Framework. 

We demonstrate how clinical variables can be incorporated into the deep learning 

workflow in the interpretability toolbox. The deep learning model that makes its predictions 

based on images and clinical variables can be explained using the counterfactual and layerwise 

relevance propagation framework. The contribution of each image and clinical variable, both 

in the local and global sense, is determined using the layerwise relevance propagation 

framework. Counterfactual explanations are generated by traversing the latent space of the 

VAE while holding the clinical variables constant to determine how changes in the image 

impact the model’s prediction while keeping the clinical variables constant. 

A Global LRP analysis of a model identified SWE, future liver remnant volume (FLR), 

albumin (ALB) as the most important features for symptomatic PHLF prediction. Other 

variables such as resected liver volume (LRV), total bilirubin (TBIL), total liver volume (TLV), 

model for end-stage liver disease (MELD) score, prothrombin time (PT), also contributed to 

the prediction (Fig. 7a). Figs. 7b and 7c show LRP local bar plots for two test cases. Fig. 7b 

shows a case without symptomatic PHLF that had been classified by the model. The plot shows 

that FLR, SWE and ALBI contributed most to the negative prediction. Fig. 7c shows a case 

with symptomatic PHLF that has been classified correctly by the model. The plot shows that 

SWE contributed most to the positive prediction and FLR and ALB contributed most to the 

negative prediction. 
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Figure 7: (a) The global layer-wise relevance propagation showing different feature contribution. (b)The 
local layer-wise relevance bar plot showing the feature contributions for a case without symptomatic 
PHLF. (c) The local  layer-wise relevance bar plot showing the feature contributions for a case with 
symptomatic PHLF. ALB, albumin;TBIL, total bilirubin; GGT, gamma-glutamyl transferase; PT, 
prothrombin time; INR, international normalized ratio; ALBI: Albumin-Bilirubin; CP_score: Child-Pugh 
score; CP_grade: Child-Pugh grade; MELD: model for end-stage liver disease; CSPH: Clinically 
significant portal hypertension;  BCLC, Barcelona Clinic Liver Cancer;  TLV: total liver volume; RLV: 

resected liver volume; FLR: future liver remnant volume; PHLF: post-hepatectomy liver failure.  
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4. Platform for Validation of Explanations 

It is important to carry out a usability evaluation of explanations as well as an evaluation of 

explanations in a clinical workflow. The interpretability toolbox contains an example platform 

for the clinical validation and usability assessment of various explanation types. The platform 

has been developed in a modular fashion with a config file. The config path contains paths to 

different types of explanations. The following link hosts an example of the platform for the 

validation of the counterfactual and layerwise relevance propagation framework: https://st-

trial-hbhdzvtdqlr.streamlit.app/. Figure 8 shows different pages from the modular platform.

 

5. Next Steps 

In this document, we present a comprehensive interpretability toolbox that can be used to 

generate explanations for both handcrafted radiomics and deep learning solutions. In the 

future, additional explainability tools will be incorporated into this toolbox. The handcrafted 

radiomics toolbox will be integrated into the virtual research environment to generate 

explanations for any handcrafted radiomics model. 

 

 

 

 

 

 

https://st-trial-hbhdzvtdqlr.streamlit.app/
https://st-trial-hbhdzvtdqlr.streamlit.app/
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