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2. Executive Summary 

In this deliverable, we present the progress on task 6.2 “Addressing bias, uncertainty and 

error in AI solutions for cancer imaging” that started on M12 and will be finalised on M36. 

Overall, the task has been split into two sub-tasks: 1) error and bias assessment; and 2) 

uncertainty estimation. A remarkable progress has been made on the second task as the 

problem does not depend on the availability of carefully curated and detailed annotated data 

from the clinical partners. Commonly used state of the art approaches for the uncertainty 

estimation have been reviewed, implemented, and analysed for the breast cancer use case of 

the EuCanImage project. As for the first sub-task, although the clinical data is not available, 

great progress has been achieved in collaboration with the AI and Clinical working groups to 

define the requirements, evaluation metrics, and identification of potential biases not only on 

macro factors such as demographics, socio-economic status, etc., but also on micro level 

variables such as biological reports. A framework of an action plan has been designed to carry 

out error and bias assessment. In particular, validation, data separation, benchmarking, and 

visualisation in the OpenEBench platform. Further progress on error assessment will be 

carried out as the data from the clinical partners become available until the end of the task 

timeline. 
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1 Introduction 

In this document, we present the completed and the ongoing progress as well as future work 

on error assessment and uncertainty estimation in Artificial Intelligence (AI) developed within 

the EuCanImage project. Throughout the timeline of this task (T6.2), the following aspects 

have been researched and methodologies have been proposed. First, the importance of the 

task was investigated by looking into the areas where the modern AI failures could be 

alarming, especially in healthcare. Secondly, we identified the methods for error assessment 

and estimating the uncertainties that are common in AI-based decision-making processes. 

Moreover, the sources of uncertainties were investigated. Thirdly, approaches for detection 

of these errors and uncertainties have been explored. The common approaches from the 

literature were reviewed and their advantages and drawbacks were identified. Lastly, 

uncertainty and error elimination methods are currently under investigation, which will be 

completed and tested with the data collected from the clinical partners by the end of the 

designated timeline of M36 of this task. 

1.1 Importance of error and uncertainty assessment in AI 
The surge of Artificial Intelligence (AI) based methods in healthcare has brought a new 

spectrum of applications that re-identified the approaches tackled in Medical Image Analysis. 

Decision making models are usually trained in a supervised manner with expert annotated 

data. These models learn complex functions that map imaging and/or non-imaging features 

extracted from clinical data. The learned functions serve as a decision-making process for a 

given new data point. For complex problems that involve feature extraction from radiological 

images (i.e., radiomics) the feature space is usually high dimensional. For example, the 

radiomics feature extraction tool (presented in D5.2) extracts a minimum of 105 features 

from a region of interest (e.g., lesion, anatomical structure, etc.) categorised into shape, 

intensity, and texture (Figure 1). 

 

Figure 1: Overview of the three types of radiomics features extracted from Breast MRI images and corresponding lesion 
segmentation masks. 

These radiomics features are then put into an N-dimensional vector that acts as a point in the 

N-dimensional hyperspace. The purpose of AI is to learn an arbitrary function that can 

separate different classes (e.g., benign vs malignant tumours) in the hyperspace so that for 

the new N-dimensional points the function is still able to identify to which class it belongs 

(Figure 2). 
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Figure 2: Supervised learning in high-dimensional feature space to create a decision function that can separate different classes. 
Each point is an N-dimensional feature vector describing a single data point. The orange sheet is a learned function that 

separates the data points into different classes.  Image courtesy of [1]. 

There is no closed form solution to identify the mapping function and the number of solutions 

can be infinite. Taking this into account, the AI solutions are error-prone as it is not possible 

to learn a function that can give a correct solution at all times. Therefore, it is crucial to 

identify the ways to detect, assess, and eliminate errors in AI models, particularly, in 

healthcare applications. 

In the initial stages of development we assess errors with the ground truth on retrospective 

data collected during the EuCanImage project. However, for the data that has no ground 

truth, e.g. in real clinical applications or prospective use-cases, it is not possible to perform 

such an assessment. Although the initial error assessment done in EuCanImage is crucial, 

further error detection on new unseen data (e.g. from new centres) helps to maintain actuality 

and continuous development to the EuCanImage platform. In this case, uncertainty 

estimation in AI comes to hand as a tool to provide confidence measures to the users 

(clinicians) for all its decisions as well as detecting potential erroneous outputs by AI tools. In 

the following sections we describe the two paradigms – error assessment and uncertainty 

estimation – from retrospective and prospective points of views. 

2 Methods 

As aforementioned, the error assessment and uncertainty estimation are done: 1) with the 

data collected during the project lifetime with corresponding ground truths; and 2) for the AI 

models on existing as well as potential new data that may not have ground truths, 

respectively. In the following sections we describe the pipelines and approaches for each step. 

2.1 Methods for error assessment 
The overall framework for error assessment is shown in Figure 3. It contains three 

interconnected parts: 1) Data storage (WP3); 2) AI Virtual Research Environment – AI-VRE 

(WP5); and 3) OpenEBench – benchmarking platform (WP6).  
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Figure 3: Pipeline for error and bias assessment on retrospective unseen data with ground truth. 

The training set includes imaging and non-imaging data with corresponding ground truths for 

the use-cases of EuCanImage stored in EuroBioImaging Archive and European Genome-

phenome archive. The Virtual Research Environment (VRE) hosts AI algorithms for each use-

case trained with the data from the data storage. The VRE tools are validated on hold-out 

sets and benchmarked in the OpenEBench platform for error and bias assessment. 

For fair assessment of AI models, a validation set is separated from the collected data that 

represent real-world distribution in terms of cancer prevalence, imaging modalities, and 

protocols. In collaboration with the clinical and AI working groups (WG2 and WG5), relevant 

evaluation metrics and variables that pose potential bias are identified. Table 1 shows the 

categorised metrics per objective that could be classification, segmentation, detection (spatial 

localisation using bounding boxes), explainability, and uncertainty. Currently, more discussion 

is on process to identify more precise requirements per use cases. For example, in breast 

cancer classification from screening mammograms (use-case 8), answering questions such 

as “Is it required to localise lesions or indicating the lesion presence is enough?” or “Is 

detection of two adjacent lesions as a single lesion should be penalised during evaluation?”. 

Such clarifications will help AI developers to prioritise metrics that are really relevant in clinical 

practice. 

The initial set of biases are defined per use case as shown in Table 2. More analysis to enlist 

biases for the clinical data will be performed when the data annotation and collection process 

is complete. However, the process workflow is already specified in collaboration with the AI, 

Validation, and Clinical working groups as shown in Figure 4 and this framework will be used 

as a basis for the bias and error detection, analysis, and mitigation. In some cases, where the 

bias mitigation is not possible, the AI model will be flagged for these biases to warn the users 

for potentially unfair treatment of some samples with specific characteristics. 

Table 1: Overview of general evaluation metrics for Classification, Segmentation, Detection, 
Explainability, and Uncertainty. 

General 
Classificatio
n Metrics 

General 
Segmentation 
Metrics Detection Explainability Uncertainty 

TPR/Sensitivit
y/Recall Dice Index Intersection Over Union (IoU) 

Qualitative 
Assessment 

Negative Log 
Likelihood 

   
Trainin
g set 
with 

ground 
truth 

A
Validati
on set 
with 

ground 
truth 

OpenEBench 

Error and bias 
assessment 

Visualisation 

(ROC, t-SNE, 
heatmaps, 

decision trees, 

VRE 

A

A A

A A

EuroBioImag
ingand EGA 
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TNR/Specificit
y 

Surface Dice 
Index 

Boundary Intersection Over Union 
(Uncertainity Aware) 

System 
Causability 
Scale (SCS) Brier's score 

PPV/Precision Jaccard Index False Positives Per Image 

In silico trial for 
usefulness of 
explanations in 
clinical practice  Entropy 

NPV 
Hausdorff 
Distance FROC Curve (AUC-FROC)  

Mutual 
Information 

Accuracy 

Hausdorff 
Distance 95 
percentile 

Average Precision at various thresholds 
(alpha= 0.1 to 0.75)  Variance 

F1 Score 

Average 
Symmetric 
Surface Distance 

Sensitivity at various thresholds (alpha = 
0.1 to 0.75)  

Calibration 
Curves 

Balanced 
Accuracy 

Normalised 
Surface Distance    

Cohen's 
Kappa 

Modified 
Hausdorff 
Distance    

Weighted 
Cohen's 
Kappa 

Average Distance 
(2D)    

Matthews 
Correlation 
Coefficient     

AUC Receiver 
Operating 
Characteristic 
Curve     

AUC Precision 
Recall Curve     
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Table 2: Overview of potential biases per use case identified within the AI Working Group. 

Use-case AI WG Biases 

1.Liver diagnosis (CT) 
•Classification (benign/malignant) ? 

•Age 
•Geography 
•Lesion size 
•Differences in the image acquisition 
•Coexistence of HCC with other abnormalities (like 
hemangioma) 

2. Liver Diagnosis (MRI) 
•Classification (benign/malignant) ? 

•Age 
•Geography 
•Lesion size 
•Differences in the image acquisition 
•coexistence of HCC with other abnormalities (like 
hemangioma) 

3. Colorectal metastasis detection (CT) 
•Detection (localization) 

•Age 
•Geography 
•Lesion size 
•Differences in image acquisition. 
•coexistence of metastasis with other abnormalities (like 
hemangioma) 

4. Mesorectal lymph node metastasis 
identification (MRI) 
•Detection (localization)  
•Classification (metastasis present, not present)  

•Age 
•Geography 
•Differences in the image acquisition 
• presence of other types of lymph nodes 

5. Therapy response prediction based on primary 
imaging (for staging and restaging) (MRI) 
•Classification (no response, partial response, 
complete response) 

•Age 
•Geography 
•Lesion size 
•Differences in the image acquisition 
•presence of other pathology in the pelvic region 

6. Molecular subtype classification in invasive 
ductal breast carcinoma (MG) 
•Classification (Luminal A, Luminal B, HER2 positive, 
triple negative) 

•Age 
•Geography 
•Lesion size 
•Breast composition 
•Differences in the image acquisition protocols 
•Aesthetic Implants 
•Occult lesions 

7. Treatment Response Prediction (Breast MRI) 
•Segmentation (Instance) 
•Classification (no response, partial response, 
complete response)  

•Age 
•Geography 
•Lesion size 
•Image acquisition differences 

8. Breast Screening (MG) 
•Segmentation (Instance) 
•Classification (normal, benign, malignant) 

•Breast composition 
•Age  
•Geography 
•Lesion size 
•Differences in the image acquisition protocols 
•Aesthetic Implants 
•Occult lesions 
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Figure 4: Bias and error assessment, visualisation, and mitigation framework. 

Thorough error analysis is often more efficient by visualisation. Therefore, the OpenEBench 

platform is under development for the EuCanImage use cases. Different visualisations based 

on evaluation metrics defined in Table 1 can be useful to evaluate the algorithms. However, 

more systematic approaches are required to analyse the error occurrences. Inspired by the 

open source “responsible AI toolbox” by Microsoft  [2], we will incorporate error assessment 

dashboards to the OpenEBench platform. The following techniques will be included: 

1) Decision Tree: Discover subjects with high error rates across multiple features using the 

binary tree visualisation. This helps to investigate indicators such as error rate, error 

coverage, and data representation for each discovered cohort. 

2)  Error Heatmap: Once the hypotheses are formed on the most impactful features for failure, 

using the Error Heatmap helps to further investigate how one or two input features impact 

the error rate across subjects. 

After identifying subjects with higher error rates, one can debug and explore these subjects 

further. Furthermore, data exploration and model explanation can be useful to gain deeper 

insights about the model or the data. The model explanation and interpretability is addressed 

in T5.6 and is expected to be completed by M48. 

2.2 Methods for uncertainty estimation 
As it was shown in Figure 1, the error assessment is done with the data collected from the 

EuCanImage clinical partners with their corresponding ground truths. Although this analysis 

is useful for benchmarking and error correction in the AI tools deployed in the VRE, there 

must be a mechanism that detects anomalies for the new cases without ground truths. The 

pipeline for such a scenario is illustrated in Figure 5. Uncertainty estimation is a good 
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procedure to employ for analysing the failure cases, detecting out-of-distribution (OOD) 

samples, and providing confidence measures to the AI prediction. 

 

Figure 5: Pipeline for uncertainty estimation on prospective unseen data without ground truths. 

Since the beginning of the task, we have done a deep analysis of the state-of-the-art methods 

for enabling uncertainty estimation in AI. In particular, the applications of Deep Learning (DL) 

as they are notoriously known for their overconfident predictions and silent failures for OOD 

data. In the following sections we describe the types and sources of uncertainties in DL, state-

of-the-art techniques to estimate uncertainties, and the EuCanImage developed tool that 

mitigates the drawbacks of the existing approaches. 

2.2.1 Types of uncertainties in AI 
There are two types of uncertainties: 1) epistemic – inherent to the model; and 2) aleatoric 

– inherent to the noise in data. The epistemic uncertainty arises from the lack of knowledge 

in the model, i.e. due to the unseen data during training. Hence, this type of uncertainty can 

be fully eliminated if the model is trained with an infinite amount of data. The aleatoric 

uncertainty has two sub-categories: 1) heteroscedastic – corrupt data such as motion 

artefacts or radiofrequency spikes in MRI; 2) homoscedastic – constant noise that is caused 

by the sensor. The aleatoric uncertainty cannot be eliminated but can be detected. In 

EuCanImage, we mainly focused on epistemic uncertainty estimation as it is directly linked to 

detecting failure cases and providing confidence intervals on new test subjects. 

2.2.2 State of the art approaches and their limitations 

Figure 6 shows different categories of uncertainty estimation methods reviewed during this 

task. They are divided mainly into two categories based on their fundamental differences. 

 

A
New 

dataset 
without 
ground 
truth 

VRE 

A

A A

A A

 

VRE 

Prediction 

Confidenc

Uncertaint

E.g. cancer or 
healthy, 
segmentation, etc. 
Per-case, e.g. 80% 
probability it’s cancer 
with 20% (low) 
confidence Per-pixel location 
based uncertainties. 
E.g. segmentation, 
detection 
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Figure 6: Uncertainty estimation methods in the literature categorised into different classes of techniques. 

The main difference of these DL based techniques from the regular DL methods is that the 

latter ones are deterministic where each parameter in the network is a point estimate (a single 

number). The deterministic nature of the methods does not allow estimating the model 

uncertainties. Therefore, the research focus has gone towards building stochastic (Bayesian) 

neural networks. 

 

 

Figure 7: On the left: deterministic neural network with weights described as point estimates. On the right: stochastic neural 
network where the weights are distributions characterised by a tractable probability distribution family (usually Gaussian). 

Figure courtesy of [8] 
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Overall, the main idea of uncertainty estimation in deep learning is to learn the posterior 

distribution of the weights given a training dataset (Figure 7). 

From the methods in the literature, we have evaluated the commonly used Bayesian and non-

Bayesian approaches such as Monte-Carlo Dropout (MCDropout), Stochastic Weight 

Averaging Gaussian (SWAG), Bayes-by-Backprop (BBB), Stein Variational Gradient Descent 

(SVGD), and Deep Ensembles (DE) [3, 4, 5, 6, 7]. We assessed their advantages and 

limitations in the breast cancer use case (UC8), specifically, for breast mass segmentation in 

mammograms. Table 3 summarises the advantages and limitations of the commonly used 

state of the art methods for uncertainty estimation in DL. 

Table 3: Advantages and limitations of commonly used state of the art uncertainty estimation 
techniques in the literature. 

Method Advantages Limitations 

MCDropout Simple, scalable Multi-pass, hyperparameter 

tuning is required 

SWAG Intuitive, elegant 

formulation 

Multi-pass, slow 

convergence, data hungry 

BBB Good calibration, solid 

mathematical background 

Multi-pass, slow 

convergence, data hungry 

SVGD Intuitive, elegant 

formulation, best calibration 

Multi-network, parallel 

training, slow convergence 

DE Best calibration, intuitive, 

scalable 

Multi-network 

 

As can be seen, most methods require multiple passes at test time to get final prediction and 

to estimate the uncertainties. Slow convergence and data hungry nature of some methods 

make them impossible to use in medical image analysis where the data annotation process is 

costly. The best method currently available is the DE that requires training multiple networks, 

which is inefficient. Taking these into account, we proposed a new framework that takes all 

the advantages and eliminates the limitations of these commonly used techniques. 

2.3 Proposed uncertainty estimation method 
Our method is called Layer Ensembles (LE) and it is inspired by the state of the art DE [7] for 

uncertainty estimation as well as a more recent work [9] that estimates example difficulty 

through prediction depth. We introduced how LE can be used to obtain a single image-level 

uncertainty metric that is more useful for some tasks compared to the commonly used pixel-

wise variance, entropy, and mutual information (MI) metrics. 

In LE, we attach a prediction head after each layer output in the network as shown in Figure 

8. We used a CNN following the U-Net architecture with different modules in the decoder and 

encoder blocks. LE is architecture agnostic and the choice of U-Net was due to its wide use 

and high performance on different medical imaging tasks. 
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Figure 8: Layer Ensembles framework. In this example, LE is built on top of U-Net like architecture. Encoder Block (EB) in orange 
and Decoder Block (DB) in green have internal structures as depicted in the boxes below with corresponding colours. Ten 

Segmentation Heads (SH) are attached after each layer output with an up-scaling factor depending on the depth of the layer. 
SCSE - Squeeze and Excitation attention module. BN - Batch Normalisation. 

As it was mentioned, DE has been used widely in the literature for epistemic uncertainty 

estimation. The original method assumes a collection of M networks with different initialisation 

trained with the same data. Then, the outputs of each of these M models can be used to 

extract uncertainty measurements (e.g. variance). As we have shown in Figure 8, ten 

segmentation heads were added after each layer. Then, LE is a compound of M sub-networks 

of different depths. Since each of the segmentation heads is randomly initialised, it is sufficient 

to cause each of the sub-networks to make partially independent errors. The outputs from 

each of the segmentation heads can then be combined to produce final segmentation and 

estimate the uncertainties, similarly to DE. Hence, LE is an approximation to DE, but using 

only one network model. 

LE can also be viewed as stacked networks where the parameters of a network ft is shared by 

ft+1 for all t in [0, N), where N is the total number of outputs. This sequential connection of 

sub-networks allows us to observe the progression of segmentation through the outputs of 

each segmentation head. We can measure the agreement between the adjacent layer outputs 

– e.g. using the Dice coefficient – to obtain a layer agreement curve. Depending on the 

network uncertainty, the agreement between layers will be low, especially in the early layers 

(Figure 9). We proposed to use the Area Under Layer Agreement curve (AULA) as an image-

level uncertainty metric. Figure 10 demonstrates that AULA is a good uncertainty measure to 

detect poor segmentation quality by evaluating the fraction of remaining images with poor 

segmentation after a fraction of poor quality segmentation images are flagged for manual 

correction. We considered DSCs below 0.90 as poor quality. 
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Figure 9: Layer Agreement curve. a) A high contrast lesion: large AULA and low uncertainty. b) A low contrast lesion and 
calcification pathology is present: small AULA and higher uncertainty. Arrows represent the correspondence between layers 1 

and 2, 2 and 3, etc. DSC -- Dice Similarity Coefficient. Green contours are ground truths. 

 

Figure 10: Segmentation quality control for DE and LE. The following are averaged indicators for: random flagging (dashed 
black); remaining 5% of poor segmentations (dotted grey); and ideal line (grey shaded area). 

Table 4 compares the segmentation performance of LE with DE, and Plain models in terms of 

Dice Similarity Coefficient (DSC) and Modified Hausdorff Distance (MHD). Two-sided paired t-

test is used to measure statistically significant differences with 𝜶 = 0.05. LE performs similarly 

to DE for both DSC and MHD metrics and significantly outperforms a deterministic counterpart 

model (Plain). The NLL (calibration performance metric) of LE is significantly better compared 

to others (p < 0.001). 
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Table 4: Segmentation and confidence calibration performance for Plain U-Net, DE, and LE on publicly 
available BCDR mammogram dataset. The values for Dice Similarity Coefficient (DSC), Modified 

Hausdorff Distance (MHD), and Negative Log-Likelihood (NLL) are given as mean(std). The best values 
are in bold. Statistically significant differences compared to LE are indicated by *. 

 

Moreover, as can be seen in Figure 11, DE's uncertainty maps are overconfident, while LE 

manages to highlight the difficult areas. We believe that having such meaningful heatmaps is 

more helpful for the clinicians (e.g. for manual correction). 

 

Figure 11: Examples of visual uncertainty heatmaps based on variance for high uncertainty areas (red arrows) using LE (top) and 

DE (bottom) for breast mass segmentation. Black and green contours correspond to ground truth. 

The computational gain for LE compared to DE was substantial, both in training and testing 

due to the single network and single pass nature of LE. For training, we started measuring 

time after one epoch to let the GPU warm-up. Then, we captured the training (including 

backprop) and test times as seconds per batch. The averaged times were 0.99, 0.20, and 

0.18 for DE, LE, and Plain, respectively. Similarly, the testing times were 0.240, 0.047, 0.045 

for DE, LE, and Plain, respectively. These results show that LE allows much efficient training 

and testing compared to DE and a similar speed to the Plain approach. 

2.4 Layer Ensembles Framework for building on top of other methods 

We prepared an open-source tool available at https://github.com/pianoza/LayerEnsembles.  

https://github.com/pianoza/LayerEnsembles
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The steps are shown below: 

1. Load any model 
from torchvision.models import resnet18 

architecture = resnet18(weights=None, num_classes=2) 

 

2. Import the LayerEnsembles wrapper and the task Enum (e.g., segmentation, classification, 

regression) 
from methods.layer_ensembles import LayerEnsembles 

from utils import Task 

 

3. Get the names of all the layers in your model 
all_layers = dict([*architecture.named_modules()]) 

intermediate_layers = [] 

for name, layer in all_layers.items(): 

    if '.relu' in name: 

        intermediate_layers.append(name) 

 

The name signature (“.relu”) can be changed to any other component e.g., .bn or .conv the 

'.' is to include only sub-modules (exclude stem of the network). 

4. Init LayerEnsembles with the names of the intermediate layers to use as outputs 

 
model = LayerEnsembles(architecture, intermediate_layers) 

# Dummy input to get the output shapes of the layers 

x = torch.randn(1, 1, 128, 128) 

output = model(x) 

out_channels = [] 

for key, val in output.items(): 

    out_channels.append(val.shape[1]) 

# Set the output heads with the number of channels of the output layers 

model.set_output_heads(in_channels=out_channels,task=Task.SEGMENTATION, 

classes=2) 

 

5. Check the output shapes 
outputs = model(x) 

print(len(outputs)) 

for layer, out in outputs.items(): 

    print(layer, out.shape) 

 

6. Training goes as usual and the outputs is a dictionary with tensor values corresponding 

for each output head name as keys. Thus, we calculate the total_loss as the sum of each 

output head and then backpropagate. 
model.train() 

total_loss = 0 

outputs = model(x) 

losses = [criterion(output, target) for _, output in outputs.items()] 

for loss in losses: 

    total_loss = total_loss + loss 

total_loss.backward() 

optimizer.step() 
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The loss functions can be modified easily and the framework allows working around on how 

the total loss is calculated. 

 

7. In testing, the output list contains predictions from each head. You can combine them in 

any way you like (e.g., averaging, STAPLE). 

3 Future work 

Visualisation and benchmarking tools will be developed in the VRE using the OpenEBench 

platform. The hold-out datasets collected during the EuCanImage project for validation will 

have bias-prone variables and evaluation metrics for each use-case. All the existing and future 

AI tools in the VRE will undergo thorough validation for error and bias detection using the 

approaches listed in Section 2.2. Error and uncertainty mitigation measures such as continual 

learning will be employed for the AI solutions that have been deemed to be unsatisfactory by 

the evaluation benchmark. 
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