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1.  Version Log 

 

Issue Date Version Involved Comments 

23-09-2023 v1.0 Z. Salahuddin, Philippe 

Lambin  

Initial draft  

26-09-2023 v1.1 Internal review H. 

Woodruff 

Feedback 

26-09-2023 v1.1 Xènia Puig  Feedback 

27-09-2023 v1.2 Philippe Lambin, Z. 

Salahuddin 

2nd draft according to 

comments 

29-09-2023 Final Xènia Puig, Oliver Díaz, 

Karim Lekadir 

Revised and corrected final 

version.  

 

2. Executive Summary  

 

Through iterative (virtual and face-to-face) meetings with experts in artificial intelligence (AI), 

as well as final users for the respective use cases, we have produced two documents to guide 

the model development and support the evaluation process to ensure accurate assessment 

of clinical effectiveness:  

a) A first table with the preferred evaluation metrics for different AI tasks (General 

Classification Metrics, General Segmentation Metrics, Detection, Explainability, 

Uncertainty), summarized in Table 1 based on predefined requirements. 

b) A second list containing the preferred evaluation metrics for each use case (Table 2). 

In this specific list, we have also added the potential biases and the risk of AI failures.  
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3. List of the preferred metrics for various AI tasks - outcome of 

expert consensus  

 

It is crucial to identify the specific medical imaging task at hand, whether it falls into the 

categories of classification, segmentation, or detection. The selected metrics may not 

consistently align with the biomedical requirements. For instance, general object detection 

challenges are frequently approached as segmentation tasks, leading to the adoption of 

metrics that fail to consider the potentially crucial aspect of precisely locating all objects within 

the scene [1]. AI solutions are perceived as black boxes due to the underlying complex 

decision-making process. The explainability of AI solutions is of paramount importance. 

Quantitative and qualitative evaluations are necessary to ensure robust and trustworthy 

explanations [2, 3]. It is also important to quantify the uncertainty associated with the AI 

explanations and evaluate the uncertainty in a quantitative manner. In our approach, we first 

define the most relevant AI tasks for the project, identifying five distinct tasks: 

a) Classification,  

b) Segmentation,  

c) Detection,  

d) Explainability,  

e) Uncertainty.  

 

We concluded that ensuring the reliability and acceptance of AI-based systems in the clinic 

requires robust metrics. These metrics must meet several critical requirements to be 

considered acceptable and effective from the different stakeholders involved. Here, we outline 

key prerequisites for metrics used in AI for clinical applications. 

1. Comprehensibility to Data Scientists: Metrics should be clearly defined, well-

understood, and easily interpretable by data scientists involved in AI model 

development and validation. This clarity is essential for designing, training, and 

refining AI algorithms effectively. 

 

2. Accessibility to Clinicians: Metrics should not remain confined to the realm of data 

scientists alone. Clinicians, who are the primary end-users of clinical AI, must also 

comprehend and appreciate these metrics. User-friendly presentations and 

explanations are essential to foster trust and collaboration between data scientists and 

clinicians [4]. 

 

 

3. Acceptance by Domain Experts: Metrics should not be arbitrary but rooted in clinical 

significance. They must reflect meaningful clinical outcomes and align with domain-

specific expertise [5]. Metrics that are regularly featured in key peer-reviewed papers 

and endorsed by experts in the field provide confidence in their clinical relevance. 
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4. Regulatory Compliance: Metrics used for evaluating AI algorithms in the clinical 

context should meet regulatory standards and guidelines. Compliance with regulatory 

requirements ensures that AI systems meet the necessary safety and efficacy 

standards, inspiring confidence among users and stakeholders. 

 

5. Clinical Relevance: Metrics should directly relate to clinical outcomes or patient care 

[6]. They should not merely reflect algorithmic performance but translate into 

meaningful improvements in diagnosis, treatment, or patient management. 

 

6. Ethical Considerations: Metrics should also consider ethical aspects, such as 

fairness, transparency, and bias mitigation [7]. Ethical metrics assess the impact of AI 

on vulnerable populations and ensure that the technology respects patients' rights and 

values. 

 

In the pursuit of deploying AI tools in clinical settings, metrics play a pivotal role in evaluating 

the performance and acceptability of these systems. For an AI to be deemed acceptable in 

the clinic, metrics must meet requirements that encompass clarity for data scientists, 

accessibility for clinicians, acceptance by domain experts, regulatory compliance, consistency, 

clinical relevance, and ethical considerations. Fulfilling these requirements not only ensures 

the reliability of AI in healthcare but also fosters trust among stakeholders and contributes to 

improved patient outcomes. 

 

We formulated the list of the most common metrics following a review of the literature and 

an expert discussion (Table 1).
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Table 1: List of the preferred metrics for various AI tasks - outcome of expert consensus 

 



 
   

Page 6 of 12 

 

4. List of the preferred metrics for various use case - outcome of 

expert consensus  

In the second phase, we organized several online discussions with a multidisciplinary group 

of experts. The starting point was the list from Table 1, a description of the case, and the 

previously mentioned requirements. Consequently, a list of at least three metrics per use case 

was developed. We noticed that having evaluation metrics with high values would not 

necessarily translate to usable AI. Therefore, we added two extra points, even though they 

were not formally named in the deliverable description: 

I. Potential biases: 

As AI imaging algorithms are eventually integrated into healthcare systems, the issue of 

potential bias has come to the forefront of discussions. Bias in AI algorithms can manifest in 

various forms and sources, including patient’s data (gender, race, geographical location), 

technical specifications (hardware used for image acquisition, imaging protocol) or even the 

population's co-morbidities. 

1) Gender and Race Bias: AI algorithms can inherit biases present in the data they are 

trained on. If training data predominantly includes images of one specific gender or race (e.g., 

white European), the algorithm may perform less accurately on patients from 

underrepresented groups (e.g., black African) [8]. Another example might be a model trained 

primarily on images of male patients may not perform as well on female patients, leading to 

potential misdiagnosis or delayed treatment. In order to reduce such bias, Mitigation 

Strategies can be put into place: Diverse and Inclusive Training Data. To address gender and 

race bias, it is crucial to ensure that the training dataset is diverse and representative of the 

entire patient population. Regularly auditing the dataset for biases and adjusting it accordingly 

can help mitigate these issues. 

2) Geographical Location Bias: AI algorithms may also show variations in performance 

based on geographical location. Differences in healthcare infrastructure, equipment quality, 

and disease prevalence can affect the quality and availability of training data, potentially 

leading to disparities in algorithm accuracy. Mitigation Strategy: Global Data Collaboration: 

Collaboration between healthcare institutions worldwide can help create more geographically 

diverse datasets. Sharing data across borders and regions allows AI algorithms to learn from 

a broader range of patient cases, reducing location-based bias. 

3) Hardware and Protocol Bias: Variations in hardware and imaging protocols can 

introduce bias into AI-powered algorithms [9]. Different hospitals may use different imaging 

devices, settings, and protocols, affecting the quality and characteristics of the input data. 

Mitigation Strategy: Standardization, Harmonization of AI solutions, and calibration efforts 

should be made to standardize imaging protocols and calibrate hardware to ensure 

consistency in data acquisition. AI algorithms should be designed to adapt to variations in 

input data to maintain accuracy across different devices and protocols. 

4) Population Co-Morbidities: Co-morbidities within patient populations can also pose 

challenges for AI algorithms. An algorithm trained on a specific population may struggle to 

accurately diagnose patients with different co-morbidities [10]. Mitigation Strategy: 

Comprehensive Dataset Augmentation Including a wide range of co-morbidities in the training 
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data can help improve algorithm robustness. Regular updates to the dataset to reflect 

changing demographics and disease profiles are essential to maintain accuracy. 

 5) Breast Composition Bias: Breast composition, which includes factors like breast 

density, is an important biomarker for breast cancer. It can vary significantly among 

individuals and is often linked to age and BMI (Body Mass Index). Biases related to breast 

composition can affect the accuracy of breast cancer detection algorithms [11]. For instance, 

dense breast tissue can make it more challenging to detect tumors, potentially leading to false 

negatives, especially in younger, denser-breasted women [12]. Mitigation Strategy: 

Specialized Training Data: Developing specialized training datasets that encompass a wide 

range of breast compositions, age groups, and BMIs can help AI algorithms adapt to these 

variations. Algorithms should be designed to account for differences in breast density and 

adapt their analysis accordingly. 

6) Tumor Size Bias: The size of detected tumors can vary depending on the availability 

of screening programs and the frequency of screenings within specific populations. Some 

countries may have well-established and widespread screening programs, resulting in the 

detection of smaller lesions. In contrast, regions with limited access to screenings (e.g., 

remote areas) may detect larger, more advanced tumors. Mitigation Strategy: Normalize 

Tumor Size Data: To mitigate tumor size bias, AI algorithms should consider the historical 

context of screening practices and account for variations in tumor sizes within their training 

data. This normalization process helps ensure that the algorithm's performance remains 

consistent across different screening environments. 

7) Age of Patients Bias: The age distribution of the patient population can introduce 

bias into AI algorithms. Some regions or healthcare systems may have a more elderly patient 

demographic, while others may have a younger population. Age-related differences in disease 

prevalence and presentation can impact algorithm performance. Mitigation Strategy: Age-

Stratified Analysis: AI algorithms should incorporate age-stratified analysis to better adapt to 

different patient age groups. By training on and considering age-related variations in disease 

patterns, algorithms can improve their diagnostic accuracy across diverse patient populations. 

 

In conclusion, addressing bias in AI imaging algorithms for medical applications requires a 

comprehensive approach that accounts for a wide range of factors, including breast 

composition, tumor size, and patient age. Developing inclusive and representative training 

datasets, normalizing data to account for variations, and implementing specialized analyses 

for specific subpopulations are essential steps in mitigating these sources of bias. As AI 

continues to evolve in healthcare, ongoing vigilance and adaptation will be necessary to 

ensure equitable and accurate diagnostic support for all patients. 

 

II. Risk of AI failure:  

For each use case, we also discussed and listed the main cause of potential AI failure. This 

would imply that we will need to have inclusion and exclusion criteria beforehand e.g., a 

certain AI algorithm to detect breast cancer would not work in patients with breast prostheses. 

The risk of AI failure remains a critical concern in healthcare settings, particularly when 

confronted with a constellation of complex factors that challenge the algorithms. We discussed 
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the general risk of AI failure in medical imaging and explored specific scenarios where these 

challenges are most pronounced. 

 

Several overarching factors contribute to the risk of AI failure are described below (mitigations 

are shown further below). 

 

1) Differences in Image Acquisition: Variations in image acquisition, including 

differences in hardware, imaging protocols, and patient positioning, can lead to 

inconsistencies in the input data. AI algorithms must be robust enough to accommodate these 

differences to ensure reliable performance across diverse healthcare settings. 

2) Presence of Other Types of Lymph Nodes: Identifying lymph nodes is crucial for 

disease staging and diagnosis. However, the presence of infectious or inflammatory lymph 

nodes alongside potentially cancerous ones can confound AI algorithms, increasing the risk 

of misdiagnosis. 

3) Coexisting Pathologies: In some cases, the imaged region may contain various 

pathologies or abnormalities unrelated to the primary condition of interest. For instance, lung 

cancer imaging might reveal other pulmonary diseases, complicating the algorithm's task. 

4) Occult Lesions: Occult lesions, which are not readily visible or identifiable through 

standard imaging techniques, pose a significant challenge for AI algorithms. Detecting these 

hidden abnormalities demands high sensitivity and sophisticated algorithms. 

5) Aesthetic Implants in the Breast: Breast imaging often encounters challenges when 

patients have breast implants. AI algorithms need to distinguish between normal breast 

tissue, implant-related artifacts, and potential abnormalities accurately. 

6) Segmentation Challenges: Automatic segmentation is a crucial step in many AI 

applications to avoid human errors and variability. Poor segmentation, whether due to inter- 

or intra-rater disagreement or algorithmic limitations, can undermine the accuracy of 

subsequent diagnostic steps. 

 

 

III. Mitigating the Risk 

 

In each of the scenarios mentioned above, mitigating the risk of AI failure demands careful 

consideration: 

 

a) Synthetic data generation: Generative AI algorithms can be used to produce 

synthetic samples to increase the training dataset size of a known bias to alleviate the risk of 

failure [13].  
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b) Multi-Modal Imaging: Leveraging multiple imaging modalities, such as combining 

CT and MRI data, can enhance diagnostic accuracy, especially when dealing with complex 

cases involving occult lesions or coexisting abnormalities. 

c) Clinical Expertise: Collaborative efforts involving radiologists and clinicians are 

critical. These experts can provide valuable insights and assist in cases that require nuanced 

interpretation. 

d) Data Augmentation: Expanding training datasets to include diverse cases with 

variations in imaging conditions and pathological complexities can enhance algorithm 

robustness. 

e) Post-Segmentation Quality Control: Implementing post-segmentation quality 

control steps can help identify and correct segmentation errors, reducing the risk of 

downstream diagnostic errors. 

We concluded that AI has the potential to revolutionize medical imaging, but the risk of failure 

remains a formidable challenge, particularly in scenarios involving complex imaging conditions 

and coexisting pathologies. Addressing these risks requires a multi-faceted approach that 

encompasses algorithmic sophistication, clinical expertise, and data-driven strategies. By 

continually refining AI solutions and collaborating across interdisciplinary teams, we can work 

towards reducing the risk of AI failure in medical imaging and improving patient outcomes. 
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Table 2: List of the preferred metrics for various use case - outcome of expert consensus  
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5. Conclusions 

Through iterative (virtual and face-to-face) meetings with experts in AI, as well as other 

stakeholders for the respective use cases, we have produced two tables. We also have been 

inspired by an excellent consensus paper [1]. 

a) In the first step we defined requirements of the ideal metrics. Then we filled the first 

table with the preferred metrics for different tasks (General Classification Metrics, 

General Segmentation Metrics, Detection, Explainability, and Uncertainty) summarized 

in Table 1.  

b) A second list contains the preferred metrics for each use case (Table 2). We have 

added at least the metrics per use case. In this specific list, we have added the 

potential biases and the risk of AI failures.  

 

During our iterative discussions, we realized that the metrics on their own would be 

insufficient to ensure an efficient AI in a clinical context and that we should be aware of 

potential bias and the risk of AI failure during the training, to attempt to mitigate that risk, 

but also during the clinical testing. We expect that each AI will have inclusion and exclusion 

criteria. 

 

This list is dynamic and could be adapted based on recent literature. We are in the process of 

integrating these metrics into OpenEBench. 
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